Discovery of activity composites using topic models: An analysis of unsupervised methods

被引:20
|
作者
Seiter, Julia [1 ]
Amft, Oliver [2 ]
Rossi, Mirco [1 ]
Troster, Gerhard [1 ]
机构
[1] Swiss Fed Inst Technol, Wearable Comp Lab, Zurich, Switzerland
[2] Univ Passau, ACTLab, Passau, Germany
关键词
Activity routines; Daily routines; Topic modeling; Hierarchical activity recognition; Activity discovery;
D O I
10.1016/j.pmcj.2014.05.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work we investigate unsupervised activity discovery approaches using three topic model (TM) approaches, based on Latent Dirichlet Allocation (LDA), n-gram TM (NTM), and correlated TM (CTM). While LDA structures activity primitives, NTM adds primitive sequence information, and CTM exploits co-occurring topics. We use an activity composite/primitive abstraction and analyze three public datasets with different properties that affect the discovery, including primitive rate, activity composite specificity, primitive sequence similarity, and composite-instance ratio. We compare the activity composite discovery performance among the TM approaches and against a baseline using k-means clustering. We provide guidelines for method and optimal TM parameter selection, depending on data properties and activity primitive noise. Results indicate that TMs can outperform k-means clustering up to 17%, when composite specificity is low. LDA-based TMs showed higher robustness against noise compared to other TMs and k-means. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:215 / 227
页数:13
相关论文
共 50 条
  • [1] Discovery of Activity Patterns using Topic Models
    Tam Huynh
    Fritz, Mario
    Schiele, Bernt
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING (UBICOMP 2008), 2008, : 10 - 19
  • [2] Unsupervised Topic Discovery in User Comments
    Stanik, Christoph
    Pietz, Tim
    Maalej, Walid
    29TH IEEE INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE (RE 2021), 2021, : 150 - 161
  • [3] TOPIC IDENTIFICATION OF SPOKEN DOCUMENTS USING UNSUPERVISED ACOUSTIC UNIT DISCOVERY
    Kesiraju, Santosh
    Pappagari, Raghavendra
    Ondel, Lucas
    Burget, Lukas
    Dehak, Najim
    Khudanpur, Sanjeev
    Cernocky, Jan Honza
    Gangashetty, Suryakanth V.
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 5745 - 5749
  • [4] Daily Life Activity Routine Discovery in Hemiparetic Rehabilitation Patients Using Topic Models
    Seiter, J.
    Derungs, A.
    Schuster-Amft, C.
    Amft, O.
    Troester, G.
    METHODS OF INFORMATION IN MEDICINE, 2015, 54 (03) : 248 - 255
  • [5] Activity Monitoring Using Topic Models
    Nabaei, Boshra
    Ester, Martin
    IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS: CYBERSECURITY AND BIG DATA, 2016, : 115 - 120
  • [6] Topic Models for Unsupervised Cluster Matching
    Iwata, Tomoharu
    Hirao, Tsutomu
    Ueda, Naonori
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (04) : 786 - 795
  • [7] Using Topic Modelling Algorithms for Hierarchical Activity Discovery
    Rogers, Eoin
    Kelleher, John D.
    Ross, Robert J.
    AMBIENT INTELLIGENCE - SOFTWARE AND APPLICATIONS (ISAMI 2016), 2016, 476 : 41 - 48
  • [8] Unsupervised topic discovery in micro-blogging networks
    Vicient, Carlos
    Moreno, Antonio
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (17-18) : 6472 - 6485
  • [9] Decomposition, discovery and detection of visual categories using topic models
    Fritz, Mario
    Schiele, Bernt
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 3583 - 3590
  • [10] Contextual topic discovery using unsupervised keyphrase extraction and hierarchical semantic graph model
    Du, Hung
    Thudumu, Srikanth
    Giardina, Antonio
    Vasa, Rajesh
    Mouzakis, Kon
    Jiang, Li
    Chisholm, John
    Bista, Sanat
    JOURNAL OF BIG DATA, 2023, 10 (01)