A Proximity Weighted Evidential k Nearest Neighbor Classifier for Imbalanced Data

被引:6
|
作者
Kadir, Md Eusha [1 ]
Akash, Pritom Saha [1 ]
Sharmin, Sadia [2 ]
Ali, Amin Ahsan [3 ]
Shoyaib, Mohammad [1 ]
机构
[1] Univ Dhaka, Inst Informat Technol, Dhaka, Bangladesh
[2] Islamic Univ Technol, Gazipur, Bangladesh
[3] Independent Univ, Dhaka, Bangladesh
关键词
Classifier; Imbalanced learning; kNN; Evidence theory; ALGORITHMS;
D O I
10.1007/978-3-030-47436-2_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In k Nearest Neighbor (kNN) classifier, a query instance is classified based on the most frequent class of its nearest neighbors among the training instances. In imbalanced datasets, kNN becomes biased towards the majority instances of the training space. To solve this problem, we propose a method called Proximity weighted Evidential kNN classifier. In this method, each neighbor of a query instance is considered as a piece of evidence from which we calculate the probability of class label given feature values to provide more preference to the minority instances. This is then discounted by the proximity of the neighbor to prioritize the closer instances in the local neighborhood. These evidences are then combined using Dempster-Shafer theory of evidence. A rigorous experiment over 30 benchmark imbalanced datasets shows that our method performs better compared to 12 popular methods. In pairwise comparison of these 12 methods with our method, in the best case, our method wins in 29 datasets, and in the worst case it wins in least 19 datasets. More importantly, according to Friedman test the proposed method ranks higher than all other methods in terms of AUC at 5% level of significance.
引用
收藏
页码:71 / 83
页数:13
相关论文
共 50 条
  • [1] Evidential Editing K-Nearest Neighbor Classifier
    Jiao, Lianmeng
    Denoeux, Thierry
    Pan, Quan
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2015, 2015, 9161 : 461 - 471
  • [2] A Sparse Reconstructive Evidential K-Nearest Neighbor Classifier for High-Dimensional Data
    Gong, Chaoyu
    Su, Zhi-Gang
    Wang, Pei-Hong
    Wang, Qian
    You, Yang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 5563 - 5576
  • [3] Weighted k-nearest neighbor based data complexity metrics for imbalanced datasets
    Singh, Deepika
    Gosain, Anjana
    Saha, Anju
    STATISTICAL ANALYSIS AND DATA MINING, 2020, 13 (04) : 394 - 404
  • [4] An Evidential K-Nearest Neighbor Classification Method with Weighted Attributes
    Jiao, Lianmeng
    Pan, Quan
    Feng, Xiaoxue
    Yang, Feng
    2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 145 - 150
  • [5] Feature-weighted k-nearest neighbor classifier
    Vivencio, Diego P.
    Hruschka, Estevarn R., Jr.
    Nicoletti, M. do Carmo
    dos Santos, Edimilson B.
    Galvao, Sebastian D. C. O.
    2007 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE, VOLS 1 AND 2, 2007, : 481 - +
  • [6] Research on the Improvement of K-Nearest Neighbor Classifier for Imbalanced Text Categorization
    Yang Yanmei
    Xu Linying
    2018 EIGHTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION AND MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2018), 2018, : 968 - 972
  • [7] An Evidential K-Nearest Neighbor Classifier Based on Contextual Discounting and Likelihood Maximization
    Kanjanatarakul, Orakanya
    Kuson, Siwarat
    Denoeux, Thierry
    BELIEF FUNCTIONS: THEORY AND APPLICATIONS, BELIEF 2018, 2018, 11069 : 155 - 162
  • [8] A parameter independent fuzzy weighted k-Nearest neighbor classifier
    Biswas, Nimagna
    Chakraborty, Saurajit
    Mullick, Sankha Subhra
    Das, Swagatam
    PATTERN RECOGNITION LETTERS, 2018, 101 : 80 - 87
  • [9] EEkNN: k-Nearest Neighbor Classifier with an Evidential Editing Procedure for Training Samples
    Jiao, Lianmeng
    Geng, Xiaojiao
    Pan, Quan
    ELECTRONICS, 2019, 8 (05):
  • [10] Scalable Evidential K-Nearest Neighbor Classification on Big Data
    Gong, Chaoyu
    Demmel, Jim
    You, Yang
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (03) : 226 - 237