High Surface Area Nanomacroporous Bioactive Glass Scaffold for Hard Tissue Engineering

被引:12
|
作者
Wang, Shaojie [1 ]
Jain, Himanshu [1 ]
机构
[1] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
CERAMIC SCAFFOLDS; POROSITY; CELL; DIFFERENTIATION; REGENERATION; ADSORPTION; FIBERS; 45S5;
D O I
10.1111/j.1551-2916.2010.03970.x
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Formation of sufficiently large three-dimensional (3D) nanomacroporosity in bone scaffolds remains a challenge in spite of several methods reported in literature. It is required for tissue ingrowth and for the concurrent degradation of implanted structure. We report a new technique for fabricating superior high surface area, nanomacroporous bioactive glass scaffold, which combines the sol-gel process and polymer sponge replication method. The formation of 3D structure is demonstrated in 70 mol% SiO(2)-30 mol% CaO glass composition as an example, which is uniform across the sample. It consists of open, interconnected macropores with size from 300 to 600 mu m, as desired for tissue ingrowth. At the same time, coexisting nanopores provide high-specific surface area (similar to 184 m2/g), which is needed for enhancing the structure's degradation rate. These bioscaffolds hold promise for applications in hard tissue engineering.
引用
收藏
页码:3002 / 3005
页数:4
相关论文
共 50 条
  • [1] Bioactive borate glass scaffold for bone tissue engineering
    Liang, Wen
    Rahaman, Mohamed N.
    Day, Delbert E.
    Marion, Nicholas W.
    Riley, Gwendolen C.
    Mao, Jeremy J.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2008, 354 (15-16) : 1690 - 1696
  • [2] Evaluation of 3D nano–macro porous bioactive glass scaffold for hard tissue engineering
    S. Wang
    M. M. Falk
    A. Rashad
    M. M. Saad
    A. C. Marques
    R. M. Almeida
    M. K. Marei
    H. Jain
    Journal of Materials Science: Materials in Medicine, 2011, 22
  • [3] Evaluation of 3D nano-macro porous bioactive glass scaffold for hard tissue engineering
    Wang, S.
    Falk, M. M.
    Rashad, A.
    Saad, M. M.
    Marques, A. C.
    Almeida, R. M.
    Marei, M. K.
    Jain, H.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2011, 22 (05) : 1195 - 1203
  • [4] INVESTIGATION ON THE BIOACTIVITY OF THE BIOACTIVE GLASS/CHITOSAN BONE TISSUE ENGINEERING SCAFFOLD
    Liu, H.
    Liang, Y.
    Tan, Q. R.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2015, 117 : 19 - 19
  • [5] Fabrication of a highly porous bioactive glass-ceramic scaffold with a high surface area and strength
    Jun, IK
    Koh, YH
    Kim, HE
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2006, 89 (01) : 391 - 394
  • [6] Development of hybrid scaffold: Bioactive glass nanoparticles/chitosan for tissue engineering applications
    Oudadesse, Hassane
    Najem, Sanaa
    Mosbahi, Siwar
    Rocton, Nicolas
    Refifi, Jihen
    El Feki, Hafedh
    Lefeuvre, Bertrand
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2021, 109 (05) : 590 - 599
  • [7] Synthesis and characterization of bioactive glass coated forsterite scaffold for tissue engineering applications
    Saidi, Roya
    Fathi, Mohammadhossein
    Salimijazi, Hamidreza
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 727 : 956 - 962
  • [8] PREPARATION AND CELLULAR COMPATIBILITY OF THE BIOACTIVE GLASS/CHITOSAN BONE TISSUE ENGINEERING SCAFFOLD
    Liu, H.
    Liang, Y.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2015, 117 : 20 - 20
  • [9] Bioactive glass in tissue engineering
    Rahaman, Mohamed N.
    Day, Delbert E.
    Bal, B. Sonny
    Fu, Qiang
    Jung, Steven B.
    Bonewald, Lynda F.
    Tomsia, Antoni P.
    ACTA BIOMATERIALIA, 2011, 7 (06) : 2355 - 2373
  • [10] Biodegradable and bioactive properties of a novel bone scaffold coated with nanocrystalline bioactive glass for bone tissue engineering
    Emadi, R.
    Tavangarian, F.
    Esfahani, S. I. Roohani
    MATERIALS LETTERS, 2010, 64 (13) : 1528 - 1531