EFFICIENT HIGH-ORDER DISCONTINUOUS GALERKIN COMPUTATIONS OF LOW MACH NUMBER FLOWS

被引:10
|
作者
Zeifang, Jonas [1 ]
Kaiser, Klaus [2 ,3 ]
Beck, Andrea [1 ]
Schuetz, Jochen [3 ]
Munz, Claus-Dieter [1 ]
机构
[1] Univ Stuttgart, Inst Aerodynam & Gasdynam, Stuttgart, Germany
[2] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, Aachen, Germany
[3] Univ Hasselt, Fac Wetenschappen, Diepenbeek, Belgium
关键词
discontinuous Galerkin; IMEX-Runge-Kutta; low Mach number; splitting; asymptotic preserving; RUNGE-KUTTA METHODS; ISENTROPIC EULER; CANCELLATION PROBLEM; EQUATIONS; SCHEMES; LIMIT; SYSTEMS; WAVES; FLUX;
D O I
10.2140/camcos.2018.13.243
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the efficient approximation of low Mach number flows by a high-order scheme, coupling a discontinuous Galerkin (DG) discretization in space with an implicit/explicit (IMEX) discretization in time. The splitting into linear implicit and nonlinear explicit parts relies heavily on the incompressible solution. The method has been originally developed for a singularly perturbed ODE and applied to the isentropic Euler equations. Here, we improve, extend, and investigate the so-called RS-IMEX splitting method. The resulting scheme can cope with a broader range of Mach numbers without running into roundoff errors, it is extended to realistic physical boundary conditions, and it is shown to be highly efficient in comparison to more standard solution techniques.
引用
收藏
页码:243 / 270
页数:28
相关论文
共 50 条
  • [1] A high-order discontinuous Galerkin solver for low Mach number flows
    Klein, B.
    Mueller, B.
    Kummer, F.
    Oberlack, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2016, 81 (08) : 489 - 520
  • [2] High-order discontinuous Galerkin solutions of internal low-Mach number turbulent flows
    Covello, V.
    Nigro, A.
    De Bartolo, C.
    Florio, G.
    ATI 2013 - 68TH CONFERENCE OF THE ITALIAN THERMAL MACHINES ENGINEERING ASSOCIATION, 2014, 45 : 528 - 537
  • [3] A high-order accurate discontinuous Galerkin finite element method for laminar low Mach number flows
    Nigro, A.
    Renda, S.
    De Bartolo, C.
    Hartmann, R.
    Bassi, F.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 72 (01) : 43 - 68
  • [4] A discontinuous Galerkin method for inviscid low Mach number flows
    Bassi, F.
    De Bartolo, C.
    Hartmann, R.
    Nigro, A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (11) : 3996 - 4011
  • [5] Preconditioning discontinuous Galerkin method for low Mach number flows
    Tan, Qinxue
    Ren, Jing
    Jiang, Hongde
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2015, 55 (01): : 134 - 140
  • [6] A fully coupled high-order discontinuous Galerkin method for diffusion flames in a low-Mach number framework
    Gutierrez-Jorquera, Juan
    Kummer, Florian
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2022, 94 (04) : 316 - 345
  • [7] HIGH-ORDER DISCONTINUOUS GALERKIN SOLUTION OF LOW-RE VISCOUS FLOWS
    Lu, Hongqiang
    MODERN PHYSICS LETTERS B, 2009, 23 (03): : 309 - 312
  • [8] Boundary discretization for high-order discontinuous Galerkin computations of tidal flows around shallow water islands
    Bernard, P. -E.
    Remacle, J. -F.
    Legat, V.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 59 (05) : 535 - 557
  • [9] A High-Order Discontinuous Galerkin Solver for Helically Symmetric Flows
    Dierkes, Dominik
    Kummer, Florian
    Pluemacher, Dominik
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 30 (01) : 288 - 320
  • [10] High-Order Discontinuous Galerkin Method for Computation of Turbulent Flows
    Wang, Li
    Anderson, W. Kyle
    Erwin, Taylor
    Kapadia, Sagar
    AIAA JOURNAL, 2015, 53 (05) : 1159 - 1171