Maximal and fractional maximal operators in the Lorentz-Morrey spaces and their applications to the Bochner-Riesz and Schrodinger-type operators

被引:2
|
作者
Kucukaslan, Abdulhamit [1 ,2 ]
机构
[1] Czech Acad Sci, Inst Math, Prague 11567, Czech Republic
[2] Pamukkale Univ, Fac Appl Sci, TR-20680 Denizli, Turkey
关键词
Maximal operator; Fractional maximal operator; Lorentz-Morrey spaces; Bochner-Riesz operator; Schrodinger-type operators; SUFFICIENT CONDITIONS; BOUNDEDNESS;
D O I
10.1080/09720502.2021.1885817
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to obtain boundedness conditions for the maximal function Mf and to prove the necessary and sufficient conditions for the fractional maximal oparator M-alpha in the Lorentz-Morrey spaces L-p,L-q;lambda(R-n) which are a new class of functions. We get our main results by using the obtained sharp rearrangement estimates. The obtained results are applied to the boundedness of particular operators such as the Bochner-Riesz operator B-gamma(delta) and the Schrodinger-type operators V-gamma(-Delta+ V)(-beta) is and V-gamma del(-Delta + V)(-beta) in the Lorentz-Morrey spaces L-p,L-q;lambda(R-n), where the nonnegative potential V belongs to the reverse Holder class B-infinity(R-n).
引用
收藏
页码:963 / 976
页数:14
相关论文
共 50 条