The advent of Elastic Optical Networks (EON) has led to significant improvements in optical network spectrum utilization when compared to Wavelength Division Multiplexing Optical Networks. However, the EON brought challenges to be explored, notably the Power, Routing, Modulation Level and Spectrum Assignment (PRMLSA) problem. This article aims to explore techniques for the PRMLSA problem, being developed two strategies named Shortest and Least Allocated (SLA) Path and Route-Based Spectrum Assignment (RBSA), which, respectively, include the link power spectral density inspection dynamic for routing and a physical layer factor (distance traveled) for Spectrum Assignment. Furthermore, a simplified version of the Adaptive Power Assignment (APA) [1] algorithm is presented, in which a power value between the minimum necessary and the maximum allowed is assigned to the signal. The simultaneous use of the SLA and RBSA algorithms resulted in locks of up to 0.00132%, being more than 10 times lower than the 0.0164% of the Shortest-Path and First-Fit algorithms. While the simplification of the APA resulted in 18.38% of the execution time of its respective original version, but with an increase in the blocking probability, which went from 0.016% to 0.031%, despite still being below conventional techniques, as the Constant Power Assignment strategy.