On the proof of Taylor's conjecture in multiply connected domains

被引:5
|
作者
Faraco, Daniel [1 ,2 ]
Lindberg, Sauli [3 ]
MacTaggart, David [4 ]
Valli, Alberto [5 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] UCM, CSIC, UAM, ICMAT,UC3M, E-28049 Madrid, Spain
[3] Univ Helsinki, Dept Math & Stat, POB 68, Helsinginyliopisto 00014, Finland
[4] Univ Glasgow, Sch Math & Stat, Glasgow G12 8QQ, Lanark, Scotland
[5] Univ Trento, Dept Math, I-38123 Povo, Trento, Italy
基金
欧洲研究理事会;
关键词
Magnetohydro dynamics; Magnetic helicity; Magnetic relaxation; Turbulence; MAGNETIC HELICITY; RELAXATION; PLASMA;
D O I
10.1016/j.aml.2021.107654
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this Letter we extend the proof, by Faraco and Lindberg (2020), of Taylor's conjecture in multiply connected domains to cover arbitrary vector potentials and remove the need to impose restrictions on the magnetic field to ensure gauge invariance of the helicity integral. This extension allows us to treat general magnetic fields in closed domains that are important in laboratory plasmas and brings closure to a conjecture whose resolution has been open for almost 50 years. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条