Magnitude Modelling of HRTF Using Principal Component Analysis Applied to Complex Values

被引:3
|
作者
Ramos, Oscar Alberto [1 ,3 ]
Tommasini, Fabian Carlos [1 ,2 ,3 ]
机构
[1] Univ Tecnol Nacl, Ctr Invest & Transferencia Acust CINTRA, Fac Reg Cordoba, UA CONICET, Cordoba, Argentina
[2] Univ Nacl Cordoba, Fac Matemat Astron & Fis, RA-5000 Cordoba, Argentina
[3] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
关键词
HRTF; PCA; binaural audition; auditory perception; INDIVIDUALIZATION;
D O I
10.2478/aoa-2014-0051
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Principal components analysis (PCA) is frequently used for modelling the magnitude of the head related transfer functions (HRTFs). Assuming that the HRTFs are minimum phase systems, the phase is obtained from the Hilbert transform of the log-magnitude. In recent years, the PCA applied to HRTFs is also used to model individual HRTFs relating the PCA weights with anthropometric measurements of the head, torso and pinnae. The HRTF log-magnitude is the most used format of input data to the PCA, but it has been shown that if the input data is HRTF linear magnitude, the cumulative variance converges faster, and the mean square error (MSE) is smaller. This study demonstrates that PCA applied directly on HRTF complex values is even better than the two formats mentioned above, that is, the MSE is the smallest and the cumulative variance converges faster after the 8th principal component. Different objective experiments around all the median plane put in evidence the differences which, although small, seem to be perceptually detectable. To elucidate this point, psychoacoustic discrimination tests are done between measured and reconstructed HRTFs from the three types of input data mentioned, in the median plane between-45 degrees and +90 degrees.
引用
收藏
页码:477 / 482
页数:6
相关论文
共 50 条
  • [1] Principal Component Analysis of Pinna's Structural Details on HRTF
    Qi, Na
    Feng, Xuefei
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON MULTIMEDIA TECHNOLOGY (ICMT-13), 2013, 84 : 650 - 657
  • [2] Modelling of Earphone Design Using Principal Component Analysis
    Lui, Lucas Kwai Hong
    Lee, C. K. M.
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [3] Using principal component analysis to improve earthquake magnitude prediction in Japan
    Asencio-Cortes, G.
    Martinez-Alvarez, F.
    Morales-Esteban, A.
    Reyes, J.
    Troncoso, A.
    LOGIC JOURNAL OF THE IGPL, 2017, 25 (06) : 949 - 966
  • [4] Missing values in principal component analysis
    Grung, B
    Manne, R
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1998, 42 (1-2) : 125 - 139
  • [5] Dimensionality Reduction Using Principal Component Analysis Applied to the Gradient
    Berguin, Steven H.
    Mavris, Dimitri N.
    AIAA JOURNAL, 2015, 53 (04) : 1078 - 1090
  • [6] Global term structure modelling using principal component analysis
    Novosyolov, Arcady
    Satchkov, Daniel
    JOURNAL OF ASSET MANAGEMENT, 2008, 9 (01) : 49 - 60
  • [7] Global term structure modelling using principal component analysis
    Arcady Novosyolov
    Daniel Satchkov
    Journal of Asset Management, 2008, 9 (1) : 49 - 60
  • [8] Principal component analysis for greenhouse modelling
    Laboratoire Systèmes Information Signal, Equipe COSI, Université du Sud-Toulon-Var, B.P. 20132, 83957 La Garde Cedex, France
    WSEAS Trans. Syst., 2008, 1 (24-30):
  • [9] Dynamic principal component analysis with missing values
    Kwon, Junhyeon
    Oh, Hee-Seok
    Lim, Yaeji
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (11) : 1957 - 1969
  • [10] Handling missing values in Principal Component Analysis
    Josse, Julie
    Husson, Francois
    Pages, Jerome
    JOURNAL OF THE SFDS, 2009, 150 (02): : 28 - 51