Design and Modeling of a New Variable Stiffness Robot Joint

被引:0
|
作者
Tao, Yong [1 ]
Wang, Tianmiao [1 ]
Wang, Yunqing [1 ]
Guo, Long [2 ]
Xiong, Hegen [2 ]
Chen, Fang [2 ]
机构
[1] Beihang Univ, Sch Mech Engn & Automat, Beijing 100191, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Machinery & Automat, Wuhan 430081, Peoples R China
关键词
variable stiffness; robot joint; operating safely; regulation response; ACTUATOR;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Safety constraints are a major aspect for human robots interaction. A new variable stiffness robot joint (VSR-joint) is proposed for operating safely. The proposed concept allows for the development of an actuation unit with a wide range of stiffness and a fast stiffness regulation response. The design of VSR-joint is compact and integrated highly and the operating is simply. The mechanics, the principle of operation and the model of the VSR-joint are proposed. The principle of operation of VSR-joint is based on a lever arm mechanism with a continuously regulated pivot point. The VSR-Joint features a highly dynamic stiffness adjustment along with a mechanically programmable system behavior. This allows an easy adaption to a big variety of tasks. Preliminary results are presented to demonstrate the fast stiffness regulation response and the wide range of stiffness achieved by the proposed VSR-Joint design.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Design of a robot joint with variable stiffness
    Choi, Junho
    Park, Sunchul
    Lee, Woosub
    Kang, Sung-Chul
    2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9, 2008, : 1760 - 1765
  • [2] A new variable stiffness robot joint
    Tao, Yong
    Wang, Tianmiao
    Wang, Yunqing
    Guo, Long
    Xiong, Hegen
    Xu, Dong
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2015, 42 (04): : 371 - 378
  • [3] A New Variable Stiffness Design: Matching Requirements of the Joint for Quadruped Robot
    Zhang, Xiao-Jun
    Zhang, Dong
    Shi, Yan-Lei
    Liang, Fei
    2016 INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND CONTROL AUTOMATION (ICMECA 2016), 2016, : 55 - 61
  • [4] A New Design of a Variable Stiffness Joint
    Zhu, Hongxi
    Thomas, Ulrike
    2019 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2019, : 223 - 228
  • [5] Design and Analysis of a Novel Variable Stiffness Joint for Robot
    Zhang, Xiang
    Capehart, Twan
    Moore, Carl A.
    2018 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, MATERIALS AND MANUFACTURING (ICMMM 2018), 2018, 249
  • [6] Design and Analysis of a Novel Variable Stiffness Joint for Robot
    Jin, Hui
    Luo, Mulin
    Lu, Shiqing
    He, Qingsong
    Lin, Yuanchang
    ACTUATORS, 2023, 12 (01)
  • [7] Design, modeling, and control of a variable stiffness elbow joint
    Baggetta, Mario
    Berselli, Giovanni
    Palli, Gianluca
    Melchiorri, Claudio
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 122 (11-12): : 4437 - 4451
  • [8] Design, modeling, and control of a variable stiffness elbow joint
    Mario Baggetta
    Giovanni Berselli
    Gianluca Palli
    Claudio Melchiorri
    The International Journal of Advanced Manufacturing Technology, 2022, 122 : 4437 - 4451
  • [9] Design and Modeling of a Bionic Joint with Continuously Variable Stiffness
    Liao J.
    Yi S.
    Lei F.
    Liu S.
    Guo Z.
    Wang Z.
    Yan T.
    Dang R.
    Binggong Xuebao/Acta Armamentarii, 2023, 44 (11): : 3269 - 3278
  • [10] Design and Stiffness Modeling of a Novel Planar Parallel Robot with Variable Stiffness Actuators
    Majumder, Arunabha
    Kiziloklu, Ibrahim Doruk
    Oliveira, Anderson Souza
    Bai, Shaoping
    MECHANISM DESIGN FOR ROBOTICS, MEDER 2024, 2024, : 291 - 298