Monte Carlo variations as a tool to assess nuclear physics uncertainties in nucleosynthesis studies

被引:1
|
作者
Rauscher, Thomas [1 ]
机构
[1] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
基金
欧盟第七框架计划;
关键词
S-PROCESS NUCLEOSYNTHESIS; CROSS-SECTIONS; RATES;
D O I
10.1088/1742-6596/1643/1/012062
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The propagation of uncertainties in reaction cross sections and rates of neutron-, proton-, and alpha-induced reactions into the final isotopic abundances obtained in nucleosynthesis models is an important issue in studies of nucleosynthesis and Galactic Chemical Evolution. We developed a Monte Carlo method to allow large-scale postprocessing studies of the impact of nuclear uncertainties on nucleosynthesis. Temperature-dependent rate uncertainties combining realistic experimental and theoretical uncertainties are used. From detailed statistical analyses uncertainties in the final abundances are derived as probability density distributions. Furthermore, based on rate and abundance correlations an automated procedure identifies the most important reactions in complex flow patterns from superposition of many zones or tracers. The method already has been applied to a number of nucleosynthesis processes.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Uncertainties in s-process nucleosynthesis in massive stars determined by Monte Carlo variations
    Nishimura, N.
    Hirschi, R.
    Rauscher, T.
    Murphy, A. St. J.
    Cescutti, G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 469 (02) : 1752 - 1767
  • [2] Quantifying uncertainties in primordial nucleosynthesis without Monte Carlo simulations
    Fiorentini, G
    Lisi, E
    Sarkar, S
    Villante, FL
    PHYSICAL REVIEW D, 1998, 58 (06):
  • [3] Uncertainties in s-process nucleosynthesis in low-mass stars determined from Monte Carlo variations
    Cescutti, G.
    Hirschi, R.
    Nishimura, N.
    den Hartogh, J. W.
    Rauscher, T.
    Murphy, A. St. J.
    Cristallo, S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (03) : 4101 - 4127
  • [4] Quantum Monte Carlo in nuclear physics
    Carlson, J
    QUANTUM MONTE CARLO METHODS IN PHYSICS AND CHEMISTRY, 1999, 525 : 287 - 312
  • [5] Quantum Monte Carlo methods for nuclear physics
    Carlson, J.
    Gandolfi, S.
    Pederiva, F.
    Pieper, Steven C.
    Schiavilla, R.
    Schmidt, K. E.
    Wiringa, R. B.
    REVIEWS OF MODERN PHYSICS, 2015, 87 (03) : 1067 - 1118
  • [6] Uncertainties in νp-process nucleosynthesis from Monte Carlo variation of reaction rates
    Nishimura, N.
    Rauscher, T.
    Hirschi, R.
    Cescutti, G.
    Murphy, A. St J.
    Frohlich, C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 489 (01) : 1379 - 1396
  • [7] A Monte Carlo assessment of uncertainties in heavy precipitation frequency variations
    Kunkel, Kenneth E.
    Karl, Thomas R.
    Easterling, David R.
    JOURNAL OF HYDROMETEOROLOGY, 2007, 8 (05) : 1152 - 1160
  • [8] Experimental Studies of Nuclear Physics Input for γ-Process Nucleosynthesis
    Scholz, Philipp
    Heim, Felix
    Mayer, Jan
    Netterdon, Lars
    Zilges, Andreas
    PROCEEDINGS OF THE 14TH INTERNATIONAL SYMPOSIUM ON NUCLEI IN THE COSMOS (NIC2016), 2016,
  • [9] Use of Monte Carlo Simulation to assess uncertainties in fire consequence calculation
    Salem, Ahmed M.
    OCEAN ENGINEERING, 2016, 117 : 411 - 430
  • [10] Quantum Monte Carlo approaches to nuclear and atomic physics
    Carlson, J.
    Gandolfi, Stefano
    Gezerlis, Alexandros
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2012, 2012 (01):