Cost-sensitive Hierarchical Clustering for Dynamic Classifier Selection

被引:0
|
作者
Sellmann, Meinolf [1 ]
Shah, Tapan [2 ]
机构
[1] InsideOpt, New York, NY 10003 USA
[2] GE Global Res, Machine Learning, San Ramon, CA USA
关键词
ensembles; dynamic classifier selection; portfolios;
D O I
10.1109/ICMLA55696.2022.00040
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given an ensemble of classifiers, dynamic classifier selection (DCS) selects one classifier depending on the particular input vector that we get to classify. DCS is a special case of algorithm selection (AS) where we can choose from multiple different algorithms to process a given input. We investigate if cost-sensitive hierarchical clustering (CSHC), a method originally developed for AS, is suited for DCS. We tailor CSHC for the special case of choosing a classification algorithm and compare with state-of-the-art DCS methods. We then show how the new methodology can be used for stacking. Experimental results show that CSHC-based DCS outperforms the best methods to date.
引用
收藏
页码:782 / 787
页数:6
相关论文
共 50 条
  • [1] An Adaptive Cost-sensitive Classifier
    Chen, Xiaolin
    Song, Enming
    Ma, Guangzhi
    2010 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2010), VOL 1, 2010, : 699 - 701
  • [2] Self-configuring Cost-Sensitive Hierarchical Clustering with Recourse
    Ansotegui, Carlos
    Sellmann, Meinolf
    Tierney, Kevin
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, 2018, 11008 : 524 - 534
  • [3] Cost-sensitive classifier evaluation using cost curves
    Holte, Robert C.
    Drummond, Chris
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2008, 5012 : 26 - +
  • [4] Online classifier adaptation for cost-sensitive learning
    Junlin Zhang
    José García
    Neural Computing and Applications, 2016, 27 : 781 - 789
  • [5] Online classifier adaptation for cost-sensitive learning
    Zhang, Junlin
    Garcia, Jose
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (03): : 781 - 789
  • [6] Cost-sensitive sparse subset selection
    Wei, Lai
    Liu, Shiteng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (04) : 1503 - 1515
  • [7] Classification cost: An empirical comparison among traditional classifier, Cost-Sensitive Classifier, and MetaCost
    Kim, Jungeun
    Choi, Keunho
    Kim, Gunwoo
    Suh, Yongmoo
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (04) : 4013 - 4019
  • [8] Cost-sensitive sparse subset selection
    Lai Wei
    Shiteng Liu
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 1503 - 1515
  • [9] Sparse Cost-sensitive Classifier With Application To Face Recognition
    Man, Jiangyue
    Jing, Xiaoyuan
    Zhang, David
    Lan, Chao
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1773 - 1776
  • [10] Cost-sensitive hierarchical classification for imbalance classes
    Zheng, Weijie
    Zhao, Hong
    APPLIED INTELLIGENCE, 2020, 50 (08) : 2328 - 2338