Inequivalence of Substitution Pairs in Hydroxynaphthaldehyde: A Theoretical Measurement by Intramolecular Hydrogen Bond Strength, Aromaticity, and Excited-State Intramolecular Proton Transfer Reaction

被引:51
|
作者
Mahanta, Subrata [1 ]
Paul, Bijan Kumar [1 ]
Singh, Rupashree Balia [1 ]
Guchhait, Nikhil [1 ]
机构
[1] Univ Calcutta, Dept Chem, Kolkata 700009, India
关键词
inequivalence of substitution pair positions in hydroxynaphthaldehydes; intramolecular hydrogen bond; aromaticity; ESIPT; INDEPENDENT CHEMICAL-SHIFTS; ELECTRON-DENSITY; INTERMOLECULAR DISTANCE; ROTATIONAL MOTION; 1-HYDROXY-2-ACETONAPHTHONE; ACID; 1-HYDROXY-2-NAPHTHALDEHYDE; SPECTROSCOPY; PHOTOPHYSICS; EMISSION;
D O I
10.1002/jcc.21592
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The inequivalence of substitution pair positions of naphthalene ring has been investigated by a theoretical measurement of hydrogen bond strength, aromaticity, and excited state intramolecular proton transfer (ESIPT) reaction as the tools in three substituted naphthalene compounds viz 1-hydroxy-2-naphthaldehyde (HN12), 2-hydroxy-1-naphthaldehyde (HN21), and 2-hydroxy-3-naphthaldehyde (HN23). The difference in intramolecular hydrogen bond (IMHB) strength clearly reflects the inequivalence of substitution pairs where the calculated IMHB strength is found to be greater for HN12 and HN21 than HN23. The H-bonding interactions have been explored by calculation of electron density rho(r) and Laplacian del(2)rho(r) at the bond critical point using atoms in molecule method and by calculation of interaction between sigma* of OH with lone pair of carbonyl oxygen atom using NBO analysis. The ground and excited state potential energy surfaces (PESs) for the proton transfer reaction at HF (6-31G**) and DFT (B3LYP/6-31G**) levels are similar for HN12, HN21 and different for HN23. The computed aromaticity of the two rings of naphthalene moiety at B3LYP/6-31G** method also predicts similarity between HN12 and HN21, but different for HN23. (C) 2010 Wiley Periodicals, Inc. J Comput Chem 32: 1-14, 2011
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Excited-State Intramolecular Proton Transfer and Global Aromaticity
    Nishina, Naoko
    Mutai, Toshiki
    Aihara, Jun-ichi
    JOURNAL OF PHYSICAL CHEMISTRY A, 2017, 121 (01): : 151 - 161
  • [2] Excited-state intramolecular proton transfer via a preexisting hydrogen bond in semirigid polyquinoline
    Chang, DW
    Kim, S
    Park, SY
    Yu, H
    Jang, DJ
    MACROMOLECULES, 2000, 33 (20) : 7223 - 7225
  • [3] Excited-state intramolecular proton transfer in polymers
    Tarkka, RM
    Jenekhe, SA
    ELECTRICAL, OPTICAL, AND MAGNETIC PROPERTIES OF ORGANIC SOLID STATE MATERIALS III, 1996, 413 : 97 - 102
  • [4] A theoretical assignment on excited-state intramolecular proton transfer mechanism for quercetin
    Yang, Dapeng
    Yang, Guang
    Zhao, Jinfeng
    Zheng, Rui
    Wang, Yusheng
    Lv, Jian
    JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 2017, 30 (11)
  • [5] Excited-State Intramolecular Proton Transfer Reaction of 3-Hydroxyflavone
    Yanxue Jiang
    Yajing Peng
    Journal of Cluster Science, 2015, 26 : 1983 - 1992
  • [6] Excited-State Intramolecular Proton Transfer Reaction of 3-Hydroxyflavone
    Jiang, Yanxue
    Peng, Yajing
    JOURNAL OF CLUSTER SCIENCE, 2015, 26 (06) : 1983 - 1992
  • [7] Excited state intramolecular proton transfer as a consequence of excited state aromaticity changes
    Rai, Arzoo
    Ghosh, Samudro
    Kediya, Siddhi
    Ghosh, Sayan
    Manhas, Anu
    Jha, Prakash C.
    MOLECULAR PHYSICS, 2025,
  • [8] EXCITED-STATE INTRAMOLECULAR ELECTRON TRANSFER COUPLED WITH EXCITED-STATE INTRAMOLECULAR PROTON TRANSFER IN PHOTOINDUCED ENOL TO KETO TAUTOMERIZATION
    Li, Yuanzuo
    Liu, Shasha
    Zhao, Lili
    Chen, Maodu
    Ma, Fengcai
    Ding, Yong
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2009, 8 : 1073 - 1086
  • [9] Modern Theoretical Approaches to Modeling the Excited-State Intramolecular Proton Transfer: An Overview
    Jankowska, Joanna
    Sobolewski, Andrzej L.
    MOLECULES, 2021, 26 (17):
  • [10] Theoretical study of the direction of the excited-state intramolecular proton transfer of the HBS molecule
    Zhou, Qiao
    Wang, Hongxiang
    Song, Peng
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (34) : 16059 - 16065