Error analysis of nonconforming and mixed FEMs for second-order linear non-selfadjoint and indefinite elliptic problems

被引:16
|
作者
Carstensen, Carsten [1 ,2 ]
Dond, Asha K. [2 ]
Nataraj, Neela [2 ]
Pani, Amiya K. [2 ]
机构
[1] Humboldt Univ, Dept Math, D-10099 Berlin, Germany
[2] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
关键词
FINITE-ELEMENT METHODS; UNIFYING THEORY; CONVERGENCE;
D O I
10.1007/s00211-015-0755-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The state-of-the art proof of a global inf-sup condition on mixed finite element schemes does not allow for an analysis of truly indefinite, second-order linear elliptic PDEs. This paper, therefore, first analyses a nonconforming finite element discretization which converges owing to some a priori error estimates even for reduced regularity on non-convex polygonal domains. An equivalence result of that nonconforming finite element scheme to the mixed finite element method (MFEM) leads to the well-posedness of the discrete solution and to a priori error estimates for the MFEM. The explicit residual-based a posteriori error analysis allows some reliable and efficient error control and motivates some adaptive discretization which improves the empirical convergence rates in three computational benchmarks.
引用
收藏
页码:557 / 597
页数:41
相关论文
共 50 条
  • [1] Error analysis of nonconforming and mixed FEMs for second-order linear non-selfadjoint and indefinite elliptic problems
    Carsten Carstensen
    Asha K. Dond
    Neela Nataraj
    Amiya K. Pani
    Numerische Mathematik, 2016, 133 : 557 - 597
  • [2] Stability of mixed FEMs for non-selfadjoint indefinite second-order linear elliptic PDEs
    Carstensen, C.
    Nataraj, Neela
    Pani, Amiya K.
    NUMERISCHE MATHEMATIK, 2022, 150 (04) : 975 - 992
  • [3] Stability of mixed FEMs for non-selfadjoint indefinite second-order linear elliptic PDEs
    C. Carstensen
    Neela Nataraj
    Amiya K. Pani
    Numerische Mathematik, 2022, 150 : 975 - 992
  • [4] Quasi-Optimality of Adaptive Mixed FEMs for Non-selfadjoint Indefinite Second-Order Linear Elliptic Problems
    Carstensen, Carsten
    Dond, Asha K.
    Rabus, Hella
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2019, 19 (02) : 233 - 250
  • [5] Superconvergent Discontinuous Galerkin Methods for Linear Non-selfadjoint and Indefinite Elliptic Problems
    Sangita Yadav
    Amiya K. Pani
    Neela Nataraj
    Journal of Scientific Computing, 2013, 54 : 45 - 76
  • [6] Superconvergent Discontinuous Galerkin Methods for Linear Non-selfadjoint and Indefinite Elliptic Problems
    Yadav, Sangita
    Pani, Amiya K.
    Nataraj, Neela
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 54 (01) : 45 - 76
  • [7] A priori and a posteriori error analysis of the lowest-order NCVEM for second-order linear indefinite elliptic problems
    Carsten Carstensen
    Rekha Khot
    Amiya K. Pani
    Numerische Mathematik, 2022, 151 : 551 - 600
  • [8] A priori and a posteriori error analysis of the lowest-order NCVEM for second-order linear indefinite elliptic problems
    Carstensen, Carsten
    Khot, Rekha
    Pani, Amiya K.
    NUMERISCHE MATHEMATIK, 2022, 151 (03) : 551 - 600
  • [9] SPECTRUM OF SINGULAR NON-SELFADJOINT SECOND-ORDER DIFFERENTIAL OPERATORS
    MAKSUDOV, FG
    DOKLADY AKADEMII NAUK SSSR, 1963, 153 (04): : 758 - &
  • [10] NONCONFORMING MIXED DISCRETIZATION FOR SECOND-ORDER ELLIPTIC PROBLEMS IN R3
    Kim, Ji Hyun
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (05): : 1227 - 1236