Data-Independent Feature Learning with Markov Random Fields in Convolutional Neural Networks

被引:3
|
作者
Peng, Yao [1 ]
Hankins, Richard [1 ]
Yin, Hujun [1 ]
机构
[1] Univ Manchester, Sch Elect & Elect Engn, Manchester M13 9PL, Lancs, England
关键词
Convolutional neural networks; Image representation; Markov random fields; Gibbs distribution; Self-organising maps; Image classification; Image features; SPATIAL-INTERACTION; CONVERGENCE; MODELS; SPACE;
D O I
10.1016/j.neucom.2019.03.107
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In image classification, deriving robust image representations is a key process that determines the performance of vision systems. Numerous image features and descriptors have been developed manually over the years. As an alternative, however, deep neural networks, in particular convolutional neural networks (CNNs), have become popular for learning image features or representations from data and have demonstrated remarkable performance in many real-world applications. But CNNs often require huge amount of labelled data, which may be prohibitive in many applications, as well as long training times. This paper considers an alternative, data-independent means of obtaining features for CNNs. The proposed framework makes use of the Markov random field (MRF) and self-organising map (SOM) to generate basic features and model both intra- and inter-image dependencies. Various MRF textures are synthesized first, and are then clustered by a convolutional translation-invariant SOM, to form generic image features. These features can be directly applied as early convolutional filters of the CNN, leading to a new way of deriving effective features for image classification. The MRF framework also offers a theoretical and transparent way to examine and determine the influence of image features on performance of CNNs. Comprehensive experiments on the MNIST, rotated MNIST, CIFAR-10 and CIFAR-100 datasets were conducted with results outperforming most state-of-the-art models of similar complexity. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:24 / 35
页数:12
相关论文
共 50 条
  • [1] Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis
    Li, Chuan
    Wand, Michael
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2479 - 2486
  • [2] CLASSIFICATION OF MULTITEMPORAL SAR IMAGES USING CONVOLUTIONAL NEURAL NETWORKS AND MARKOV RANDOM FIELDS
    Danilla, Carolyne
    Persello, Claudio
    Tolpekin, Valentyn
    Bergado, John Ray
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2231 - 2234
  • [3] Data-Independent Structured Pruning of Neural Networks via Coresets
    Mussay, Ben
    Feldman, Dan
    Zhou, Samson
    Braverman, Vladimir
    Osadchy, Margarita
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (12) : 7829 - 7841
  • [4] Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network
    Cao, Xiangyong
    Zhou, Feng
    Xu, Lin
    Meng, Deyu
    Xu, Zongben
    Paisley, John
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (05) : 2354 - 2367
  • [5] Feature learning for steganalysis using convolutional neural networks
    Qian, Yinlong
    Dong, Jing
    Wang, Wei
    Tan, Tieniu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (15) : 19633 - 19657
  • [6] Feature learning for steganalysis using convolutional neural networks
    Yinlong Qian
    Jing Dong
    Wei Wang
    Tieniu Tan
    Multimedia Tools and Applications, 2018, 77 : 19633 - 19657
  • [7] Discriminative Unsupervised Feature Learning with Convolutional Neural Networks
    Dosovitskiy, Alexey
    Springenberg, Jost Tobias
    Riedmiller, Martin
    Brox, Thomas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [8] Improving convolutional neural networks for cosmological fields with random permutation
    Zhong, Kunhao
    Gatti, Marco
    Jain, Bhuvnesh
    PHYSICAL REVIEW D, 2024, 110 (04)
  • [9] Deep convolutional neural networks for uncertainty propagation in random fields
    Luo, Xihaier
    Kareem, Ahsan
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2019, 34 (12) : 1043 - 1054
  • [10] Random Feature Amplification: Feature Learning and Generalization in Neural Networks
    Frei, Spencer
    Chatterji, Niladri S.
    Bartlett, Peter L.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24