A pseudo-transient Newton-Krylov-Schwarz method for incompressible Navier-Stokes equations with slip conditions for bifurcation analysis

被引:0
|
作者
Hsu, Wen-Lieh [1 ]
Hwang, Feng-Nan [1 ]
机构
[1] Natl Cent Univ, Dept Math, Taoyuan 32001, Taiwan
关键词
Incompressible Navier-Stokes equations; slip boundary conditions; domain decomposition method; Newton-Krylov-Schwarz algorithm; pitchfork bifurcation analysis; FRICTION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a parallel pseudo-transient Newton-Krylov-Schwarz (Psi-NKS) algorithm based on the Galerkin/least-squares finite element method for incompressible Navier-Stokes equations with slip boundary conditions. Many research works suggest that the slip condition can produce a more accurate numerical solution of fluid flow motion near the boundary for the case with a rough surface, porous media flows, and non-Newtonian flows. This study aims to investigate numerically how the slip condition affects the physical behavior of the fluid flows by using the Psi-NKS algorithm, including the flow structure of the lid-driven cavity and the critical Reynolds number for the pitchfork bifurcation of sudden expansion flows.
引用
收藏
页码:41 / 61
页数:21
相关论文
共 50 条
  • [1] Parallel pseudo-transient Newton-Krylov-Schwarz continuation algorithms for bifurcation analysis of incompressible sudden expansion flows
    Huang, Chiau-Yu
    Hwang, Feng-Nan
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (07) : 738 - 751
  • [2] A pseudo-transient pressure gradient method for solving the incompressible Navier-Stokes equations
    Alsaghir, Ahmad M.
    Mishra, Shashank
    Abdallah, Shaaban
    Bahk, Je-Hyeong
    PHYSICS OF FLUIDS, 2025, 37 (01)
  • [3] On Newton-Krylov multigrid methods for the incompressible Navier-Stokes equations
    Knoll, DA
    Mousseau, VA
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 163 (01) : 262 - 267
  • [4] A multigrid-preconditioned Newton-Krylov method for the incompressible Navier-Stokes equations
    Pernice, M
    Tocci, MD
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (02): : 398 - 418
  • [5] KRYLOV METHODS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    EDWARDS, WS
    TUCKERMAN, LS
    FRIESNER, RA
    SORENSEN, DC
    JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 110 (01) : 82 - 102
  • [6] Newton linearization of the incompressible Navier-Stokes equations
    Sheu, TWH
    Lin, RK
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 44 (03) : 297 - 312
  • [7] On Schwarz alternating methods for the incompressible Navier-Stokes equations
    Lui, SH
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 22 (06): : 1974 - 1986
  • [8] ON NO-SLIP BOUNDARY-CONDITIONS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    FOREMAN, MGG
    BENNETT, AF
    DYNAMICS OF ATMOSPHERES AND OCEANS, 1988, 12 (01) : 47 - 70
  • [9] Preliminary verification of incompressible Navier-Stokes equations solved by The Newton method
    Guo J.
    Zhang S.
    Yang C.
    Wang J.
    Huang S.
    Wang K.
    International Journal of Advanced Nuclear Reactor Design and Technology, 2020, 2 : 69 - 85
  • [10] Preconditioning techniques for Newton's method for the incompressible Navier-Stokes equations
    Elman, HC
    Loghin, D
    Wathen, AJ
    BIT NUMERICAL MATHEMATICS, 2003, 43 (05) : 961 - 974