A Multiarea State Estimation for Distribution Networks Under Mixed Measurement Environment

被引:13
|
作者
Mao, Mingming [1 ]
Xu, Junjun [2 ,3 ]
Wu, Zaijun [1 ]
Hu, Qinran [1 ]
Dou, Xiaobo [1 ]
机构
[1] Southeast Univ, Sch Elect Engn, Nanjing 210096, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210023, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Coll Artificial Intelligence, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Phasor measurement units; Distribution networks; Synchronization; Time measurement; State estimation; Informatics; Mathematical models; Distributed generation (DG); distribution networks; hybrid measurements; multiarea state estimation (MASE); synchronization; ISLANDING DETECTION; SYSTEM; MODEL; GENERATION;
D O I
10.1109/TII.2021.3119949
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A grand challenge for the state estimation (SE) method in large-scale distribution networks lies in how to deal with the increasing computational tasks. This article addresses the issue and proposes a novel multiarea architecture for the unbalanced distribution network SE method. The first step of the method is to introduce an innovative multiarea state estimation (MASE) model using microphasor measurement units (mu PMU) mixed with conventional supervisory control and data acquisition (SCADA) systems, with both the coordinate tensions and synchronization issues considered. The proposed model contains a SCADA measurement delay estimator and a MASE algorithm. Then, the hybrid state estimation (HSE) model is solved in a distributed way. In each subarea, the HSE problem is solved locally with minimal data exchanges among neighbor subareas. Case studies show the accuracy and efficiency enhancements obtainable of the proposed MASE method with respect to existing ones.
引用
收藏
页码:3620 / 3629
页数:10
相关论文
共 50 条
  • [1] Multiarea Distribution System State Estimation
    Muscas, Carlo
    Pau, Marco
    Pegoraro, Paolo Attilio
    Sulis, Sara
    Ponci, Ferdinanda
    Monti, Antonello
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2015, 64 (05) : 1140 - 1148
  • [2] A Multiarea Forecasting-Aided State Estimation Strategy for Unbalance Distribution Networks
    Xu, Dongliang
    Wu, Zaijun
    Xu, Junjun
    Zhu, Yingwen
    Hu, Qinran
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (01) : 806 - 814
  • [3] Decentralized State Estimation in Distribution Networks Based on Multiarea Data Negotiation and Anomaly Consensus Mechanism
    Li X.
    Han B.
    Li G.
    Luo L.
    Wang K.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41 (03): : 868 - 877
  • [4] Three-Stage Distributed State Estimation for AC-DC Hybrid Distribution Network Under Mixed Measurement Environment
    Kong, Xiangrui
    Yan, Zheng
    Guo, Ruipeng
    Xu, Xiaoyuan
    Fang, Chen
    IEEE ACCESS, 2018, 6 : 39027 - 39036
  • [5] A Distributed Multiarea State Estimation
    Mosbah, Hossam
    El-Hawary, Mo.
    2018 IEEE CANADIAN CONFERENCE ON ELECTRICAL & COMPUTER ENGINEERING (CCECE), 2018,
  • [6] A Distributed Multiarea State Estimation
    Korres, George N.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (01) : 73 - 84
  • [7] Multiarea Probabilistic Forecasting-Aided Interval State Estimation for FDIA Identification in Power Distribution Networks
    Wei, Shuheng
    Wu, Zaijun
    Xu, Junjun
    Hu, Qinran
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (03) : 4271 - 4282
  • [8] Measurement location for state estimation of distribution networks with generation
    Shafiu, A
    Jenkins, N
    Strbac, G
    IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 2005, 152 (02) : 240 - 246
  • [9] Multiarea Distribution System State Estimation via Distributed Tensor Completion
    Liu, Yajing
    Zamzam, Ahmed S.
    Bernstein, Andrey
    IEEE TRANSACTIONS ON SMART GRID, 2022, 13 (06) : 4887 - 4898
  • [10] An Efficient and Accurate Solution for Distribution System State Estimation with Multiarea Architecture
    Pau, Marco
    Ponci, Ferdinanda
    Monti, Antonello
    Sulis, Sara
    Muscas, Carlo
    Pegoraro, Paolo Attilio
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (05) : 910 - 919