Risk premium and fair option prices under stochastic volatility: the HARA solution

被引:21
|
作者
Stojanovic, SD [1 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
D O I
10.1016/j.crma.2004.11.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We have solved the problem of finding (HARA) fair option price under a general stochastic volatility model. For a given HARA utility, the 'risk premium', i.e., the 'market price of volatility risk' is determined via a solution of a certain nonlinear PDE. Equivalently, the fair option price is determined as a solution of an uncoupled system of a non-linear PDE and a Black-Scholes type PDE. (c) 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:551 / 556
页数:6
相关论文
共 50 条
  • [1] Option prices under stochastic volatility
    Han, Jiguang
    Gao, Ming
    Zhang, Qiang
    Li, Yutian
    APPLIED MATHEMATICS LETTERS, 2013, 26 (01) : 1 - 4
  • [2] The evaluation of barrier option prices under stochastic volatility
    Chiarella, Carl
    Kang, Boda
    Meyer, Gunter H.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (06) : 2034 - 2048
  • [3] Bounds on European option prices under stochastic volatility
    Frey, R
    Sin, CA
    MATHEMATICAL FINANCE, 1999, 9 (02) : 97 - 116
  • [4] Very Noisy Option Prices and Inference Regarding the Volatility Risk Premium
    Duarte, Jefferson
    Jones, Christopher s.
    Wang, Junbo l.
    JOURNAL OF FINANCE, 2024, 79 (05):
  • [5] Estimation of stochastic volatility and option prices
    Byun, Suk Joon
    Hyun, Jung-Soon
    Sung, Woon Jun
    JOURNAL OF FUTURES MARKETS, 2021, 41 (03) : 349 - 360
  • [6] Stochastic volatility models and option prices
    Valaityte, Akvilina
    Valakevicius, Eimutis
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 4, PROCEEDINGS, 2006, 3994 : 348 - 355
  • [7] The evaluation of American compound option prices under stochastic volatility and stochastic interest rates
    Chiarella, Carl
    Kang, Boda
    JOURNAL OF COMPUTATIONAL FINANCE, 2013, 17 (01) : 71 - 92
  • [8] Pricing of derivatives option with stochastic prices volatility
    Chen, J., 2005, Xi'an Jiaotong University (39):
  • [9] Volatility Risk Premium in Indian Options Prices
    Garg, Sonia
    Vipul
    JOURNAL OF FUTURES MARKETS, 2015, 35 (09) : 795 - 812
  • [10] Study on option pricing in an incomplete market with stochastic volatility based on risk premium analysis
    Otaka, M
    Yoshida, T
    MATHEMATICAL AND COMPUTER MODELLING, 2003, 38 (11-13) : 1399 - 1408