Lp-estimates for Riesz transforms on forms in the Poincare space

被引:2
|
作者
Bruna, J [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
关键词
Hodge-de Rham laplacian; Sobolev spaces; Riesz transforms; hyperbolic form convolution;
D O I
10.1512/iumj.2005.54.2501
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using hyperbolic form convolution with doubly isometry-invariant kernels, the explicit expression of the inverse of the de Rham laplacian Delta acting on m-forms in the Poincare space H-n is found. Also, by means of some estimates for hyperbolic singular integrals, LP-estimates for the Riesz transforms del(i)Delta(-1), i <= 2, in a range of p depending on m,n are obtained. Finally, using these, it is shown that A defines topological isomorphisms in a scale of Sobolev spaces H-m,p(s) (H-n) in case m not equal (n +/- 1)/2, n/2.
引用
收藏
页码:153 / 186
页数:34
相关论文
共 50 条