Asymptotic normality of kernel estimates in a regression model for random fields

被引:12
|
作者
El Machkouri, Mohamed [1 ]
Stoica, Radu [2 ]
机构
[1] Univ Rouen, Lab Math Raphael Salem, UMR CNRS 6085, F-76801 St Etienne, France
[2] Univ Lille 1, Lab Math Paul Painleve, UMR CNRS 8524, UFR Math Pures & Appl, F-59655 Villeneuve Dascq, France
关键词
nonparametric regression estimation; asymptotic normality; kernel estimator; strongly mixing random field; CENTRAL-LIMIT-THEOREM; DENSITY-ESTIMATION;
D O I
10.1080/10485250903505893
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish the asymptotic normality of the regression estimator in a fixed-design setting when the errors are given by a field of dependent random variables. The result applies to martingale-difference or strongly mixing random fields. On this basis, a statistical test that can be applied to image analysis is also presented.
引用
收藏
页码:955 / 971
页数:17
相关论文
共 50 条