Morin attenuates diethylnitrosamine-induced rat liver fibrosis and hepatic stellate cell activation by co-ordinated regulation of Hippo/Yap and TGF-β1/Smad signaling

被引:73
|
作者
Perumal, NaveenKumar [1 ]
Perumal, MadanKumar [1 ,2 ]
Halagowder, Devaraj [3 ]
Sivasithamparam, NiranjaliDevaraj [1 ]
机构
[1] Univ Madras, Dept Biochem, Guindy Campus, Madras 600025, Tamil Nadu, India
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Mol Genet, Dallas, TX 75390 USA
[3] Univ Madras, Dept Zool, Guindy Campus, Madras 600025, Tamil Nadu, India
关键词
Hepatic stellate cells; Hippo/Yap; TGF-beta; 1/Smad; Morin; Fibrosis; GROWTH-FACTOR-BETA; TGF-BETA; TISSUE INHIBITOR; IN-VIVO; KAPPA-B; WNT/BETA-CATENIN; OXIDATIVE STRESS; SELF-RENEWAL; SIZE-CONTROL; II RECEPTOR;
D O I
10.1016/j.biochi.2017.05.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Despite great progress in understanding the activation of hepatic stellate cells (HSCs) during liver fibrosis, therapeutic approaches to inhibit HSC activation remain very limited. Recent reports highlight Yes-associated protein (Yap) and transforming growth factor-beta 1 (TGF-beta 1) as critical regulators of HSC activation and henceforth a compound targeting Hippo/Yap and TGF-beta 1 /Smadpathways would be a potential anti-fibrotic candidate. Morin, a dietary flavonoid, was earlier reported to inhibit HSC proliferation and induction of apoptosis of cultured HSCs, mainly by suppressing Wnt/beta-catenin and NF-kappa B signaling, but its effect on Hippo/Yap and TGF-beta 1/Smad pathways was not determined. To address this concern, this study was carried out in cultured LX-2 cells and diethylnitrosamine-induced fibrotic rats. Morin activated hippo signaling through significantly increased expression of Mst1 and Latsl with decreased expression of transcriptional effectors Yap/TAZ, thereby prevented HSC activation and also suppressed the expression of exacerbated TGF-beta/Smad signaling molecules such as TGF-beta 1, p-Smad2/3, collagen-I, MMP-2, MMP-9 and TIMP-1 in cultured LX-2 and DEN induced fibrotic rats. Both the in vitro and in vivo results clearly showed that, morin by acting on Hippo/Yap and TGF-beta 1/Smad pathways, ameliorated experimental liver fibrosis, indicating that morin has potential for effective treatment of liver fibrosis. (C) 2017 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.
引用
收藏
页码:10 / 19
页数:10
相关论文
共 50 条
  • [1] Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling
    Xiang, Dejuan
    Zou, Jie
    Zhu, Xiaoyun
    Chen, Xinling
    Luo, Jianguang
    Kong, Lingyi
    Zhang, Hao
    PHYTOMEDICINE, 2020, 78
  • [2] Casticin attenuates liver fibrosis and hepatic stellate cell activation by blocking TGF-β/Smad signaling pathway
    Zhou, Ling
    Dong, Xiaoying
    Wang, Linlin
    Shan, Lanlan
    Li, Ting
    Xu, Wanfu
    Ding, Yan
    Lai, Mingqiang
    Lin, Xiaojun
    Dai, Meng
    Bai, Xiaochun
    Jia, Chunhong
    Zheng, Hang
    ONCOTARGET, 2017, 8 (34) : 56267 - 56280
  • [3] Chrysin attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway
    Balta, Cornel
    Herman, Hildegard
    Boldura, Oana Maria
    Gasca, Ionela
    Rosu, Marcel
    Ardelean, Aurel
    Hermenean, Anca
    CHEMICO-BIOLOGICAL INTERACTIONS, 2015, 240 : 94 - 101
  • [4] Sauchinone attenuates liver fibrosis and hepatic stellate cell through TGF-β/Smad signaling pathway
    Lee, Ju-Hee
    Jang, Eun Jeong
    Seo, Hye Lim
    Ku, Sae Kwang
    Lee, Jong Rok
    Shin, Soon Shik
    Park, Sun-Dong
    Kim, Sang Chan
    Kim, Young Woo
    CHEMICO-BIOLOGICAL INTERACTIONS, 2014, 224 : 58 - 67
  • [5] REDD1 attenuates hepatic stellate cell activation and liver fibrosis via inhibiting of TGF-β/Smad signaling pathway
    Cho, Sam Seok
    Lee, Ji Hyun
    Kim, Kyu Min
    Park, Eun Young
    Ku, Sae Kwang
    Cho, Il Je
    Yang, Ji Hye
    Ki, Sung Hwan
    FREE RADICAL BIOLOGY AND MEDICINE, 2021, 176 : 246 - 256
  • [6] Ferulic acid attenuates liver fibrosis and hepatic stellate cell activation via inhibition of TGF-β/Smad signaling pathway
    Mu, Mao
    Zuo, Shi
    Wu, Rong-Min
    Deng, Kai-Sheng
    Lu, Shuang
    Zhu, Juan-Juan
    Zou, Gao-Liang
    Yang, Jing
    Cheng, Ming-Liang
    Zhao, Xue-Ke
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2018, 12 : 4107 - 4115
  • [7] Chrysin attenuates liver fibrosis and hepatic stellate cell activation through TGF-β signaling pathway
    Balta, C.
    Herman, H.
    Gasca, I.
    Onita, B.
    Rosu, M.
    Ardelean, A.
    Hermenean, A.
    FEBS JOURNAL, 2015, 282 : 192 - 192
  • [8] Activation of primary hepatic stellate cells and liver fibrosis induced by targeting TGF-β1/Smad signaling in schistosomiasis in mice
    Ping Huang
    Huihui Ma
    Yun Cao
    Tingzheng Zhan
    Tingting Zhang
    Xinyi Wang
    Yanan Zhang
    Jing Xu
    Chaoming Xia
    Parasites & Vectors, 15
  • [9] Activation of primary hepatic stellate cells and liver fibrosis induced by targeting TGF-β1/Smad signaling in schistosomiasis in mice
    Huang, Ping
    Ma, Huihui
    Cao, Yun
    Zhan, Tingzheng
    Zhang, Tingting
    Wang, Xinyi
    Zhang, Yanan
    Xu, Jing
    Xia, Chaoming
    PARASITES & VECTORS, 2022, 15 (01)
  • [10] Roxarsone inhibits hepatic stellate cell activation and ameliorates liver fibrosis by blocking TGF-β1/Smad signaling pathway
    Li, Ting-Ting
    Su, Xiao-Wei
    Chen, Lin-Lin
    Zhang, Wan-Nian
    Zhang, Jun-Ping
    Wang, Yan
    Xu, Wei-Heng
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2023, 114