Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system

被引:94
|
作者
Luo, SK [1 ]
机构
[1] Changsha Univ, Inst Math Mech & Math Phys, Changsha 410003, Peoples R China
关键词
Hamiltonian system; Mei symmetry; Noether symmetry; Lie symmetry; conserved quatntity;
D O I
10.7498/aps.52.2941
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Mei symmetry, i.e. the form invariance, of a Hamiltonian system is studied. The definition and the determining equation of Mei symmetry in the Hamiltonian system are given. The relations among the Mei symmetry, the Noether symmetry and the Lie symmetry are studied, and the conserved quantities of Hamiltonian system are obtained. An example is given to illustrate the application of the result.
引用
收藏
页码:2941 / 2944
页数:4
相关论文
共 21 条
  • [1] Chen XW, 2002, APPL MATH MECH-ENGL, V23, P53
  • [2] Form invariance of Nielsen equation of a nonconservative mechanical system
    Fang, JH
    Xue, QZ
    Zhao, SQ
    [J]. ACTA PHYSICA SINICA, 2002, 51 (10) : 2183 - 2185
  • [3] Noether symmetry and form invariance of the Chaplygin system
    Ge, WK
    [J]. ACTA PHYSICA SINICA, 2002, 51 (05) : 939 - 942
  • [4] Form invariance of Gibbs-Appell equations for variable mass holonomic systems
    Li, RJ
    Qiao, YF
    Meng, J
    [J]. ACTA PHYSICA SINICA, 2002, 51 (01) : 1 - 5
  • [5] LI ZP, 1989, J XINJIANG U, V6, P37
  • [6] Li ZP., 1999, CONSTRAINED HAMILTON
  • [7] Li ZP., 1993, Classical and Quantal Dynamics of Constrained Systems and their Symmetrical Properties
  • [8] Luo SK, 2002, COMMUN THEOR PHYS, V38, P257
  • [9] Luo SK, 2002, CHINESE PHYS LETT, V19, P449, DOI 10.1088/0256-307X/19/4/301
  • [10] Appell equations and form invariance of rotational relativistic systems
    Luo, SK
    [J]. ACTA PHYSICA SINICA, 2002, 51 (04) : 712 - 717