On the final size of epidemics in random environment

被引:4
|
作者
Ed-Darraz, Abdelkarim [1 ]
Khaladi, Mohamed
机构
[1] Cadi Ayyad Univ Morocco, Fac Sci Semlalia Marrakech, Math & Populat Dynam Lab, Paris, France
关键词
Final epidemic size; SIR and SEIR model; Random environment; Basic reproduction number;
D O I
10.1016/j.mbs.2015.05.004
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper extends the final size result of the classical SIR epidemic model in constant and periodic environments to random environment. Conditionally on the basic reproduction number R-0 recently defined for random environment and the initial infected population fraction, we prove a final size result of an epidemic governed by the SIR model with time-depending parameters. The parameters are driven by an ergodic inhomogeneous time-periodic Markov process with finite state space. We also analyze the classical SEIR epidemic model in random environment. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:10 / 14
页数:5
相关论文
共 50 条
  • [1] Biological modeling On the final size of epidemics in a periodic environment
    Bacaer, Nicolas
    COMPTES RENDUS BIOLOGIES, 2019, 342 (5-6) : 119 - 123
  • [2] On the Final Size of Epidemics with Seasonality
    Bacaer, Nicolas
    Gomes, M. Gabriela M.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2009, 71 (08) : 1954 - 1966
  • [3] On the Final Size of Epidemics with Seasonality
    Nicolas Bacaër
    M. Gabriela M. Gomes
    Bulletin of Mathematical Biology, 2009, 71 : 1954 - 1966
  • [4] FINAL SIZE OF EPIDEMICS IN HETEROGENEOUS POPULATIONS
    SCALIATOMBA, G
    BIOMETRICS, 1985, 41 (04) : 1079 - 1079
  • [5] Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size
    J. R. Artalejo
    A. Economou
    M. J. Lopez-Herrero
    Journal of Mathematical Biology, 2013, 67 : 799 - 831
  • [6] Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size
    Artalejo, J. R.
    Economou, A.
    Lopez-Herrero, M. J.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2013, 67 (04) : 799 - 831
  • [7] Predictability in a highly stochastic system: final size of measles epidemics in small populations
    Caudron, Q.
    Mahmud, A. S.
    Metcalf, C. J. E.
    Gottfredsson, M.
    Viboud, C.
    Cliff, A. D.
    Grenfell, B. T.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2015, 12 (102)
  • [8] Heterogeneity can markedly increase final outbreak size in the SIR model of epidemics
    Leibenzon, Alexander
    Assaf, Michael
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [9] Estimating the final size of vector-borne epidemics in metapopulation networks: methodologies and comparisons
    Gimenez-Mujica, U. J.
    Velazquez-Castro, J.
    Anzo-Hernandez, A.
    Herrera-Ramirez, T. P.
    Barradas, I.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2025, 31 (01):
  • [10] POLLING SYSTEMS AND MULTITYPE BRANCHING PROCESSES IN RANDOM ENVIRONMENT WITH FINAL PRODUCT
    Vatutin, V. A.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2011, 55 (04) : 631 - 660