Nonlinear Eigenvalue Problems and Bifurcation for Quasi-Linear Elliptic Operators

被引:1
|
作者
Zongo, Emmanuel Wend-Benedo [1 ]
Ruf, Bernhard [1 ]
机构
[1] Dip Matemat, Via Saldini 50, I-20133 Milan, Italy
关键词
Quasi-linear operators; bifurcation; bifurcation from infinity; multiple solutions; P-LAPLACIAN; REGULARITY; EQUATIONS;
D O I
10.1007/s00009-022-02015-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze an eigenvalue problem for quasilinear elliptic operators involving homogeneous Dirichlet boundary conditions in a open smooth bounded domain. We show that the eigenfunctions corresponding to the eigenvalues belong to L-infinity, which implies C-1,C-alpha smoothness, and the first eigenvalue is simple. Moreover, we investigate the bifurcation results from trivial solutions using the Krasnoselski bifurcation theorem and from infinity using the Leray-Schauder degree. We also show the existence of multiple critical points using variational methods and the Krasnoselski genus.
引用
收藏
页数:31
相关论文
共 50 条