Self-encoded marker for optical prospective head motion correction in MRI

被引:47
|
作者
Forman, Christoph [1 ,2 ,3 ]
Aksoy, Murat [2 ]
Hornegger, Joachim [1 ,3 ]
Bammer, Roland [2 ]
机构
[1] Univ Erlangen Nurnberg, Pattern Recognit Lab, Dept Comp Sci, D-91058 Erlangen, Germany
[2] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[3] Grad Sch Adv Opt Technol SAOT, Erlangen, Germany
基金
美国国家卫生研究院;
关键词
Motion estimation; Prospective motion compensation; Optical motion tracking; Real-time; Neuro-MRI; TRACKING;
D O I
10.1016/j.media.2011.05.018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The tracking and compensation of patient motion during a magnetic resonance imaging (MRI) acquisition is an unsolved problem. For brain MRI, a promising approach recently suggested is to track the patient using an in-bore camera and a checkerboard marker attached to the patient's forehead. However, the possible tracking range of the head pose is limited by the fact that the locally attached marker must be entirely visible inside the camera's narrow field of view (FOV). To overcome this shortcoming, we developed a novel self-encoded marker where each feature on the pattern is augmented with a 2-D barcode. Hence, the marker can be tracked even if it is not completely visible in the camera image. Furthermore, it offers considerable advantages over the checkerboard marker in terms of processing speed, since it makes the correspondence search of feature points and marker-model coordinates, which are required for the pose estimation, redundant. The motion correction with the novel self-encoded marker recovered a rotation of 18 around the principal axis of the cylindrical phantom in-between two scans. After rigid registration of the resulting volumes, we measured a maximal error of 0.39 mm and 0.15 degrees in translation and rotation, respectively. In in vivo experiments, the motion compensated images in scans with large motion during data acquisition indicate a correlation of 0.982 compared to a corresponding motion-free reference. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:708 / 719
页数:12
相关论文
共 50 条
  • [1] Self-encoded Marker for Optical Prospective Head Motion Correction in MRI
    Forman, Christoph
    Aksoy, Murat
    Hornegger, Joachim
    Bammer, Roland
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2010, PT I, 2010, 6361 : 259 - +
  • [2] Rapid motion estimation and correction using self-encoded FID navigators in 3D radial MRI
    Wallace, Tess E.
    Piccini, Davide
    Kober, Tobias
    Warfield, Simon K.
    Afacan, Onur
    MAGNETIC RESONANCE IN MEDICINE, 2024, 91 (03) : 1057 - 1066
  • [3] Comparison of prospective and retrospective motion correction in 3D-encoded neuroanatomical MRI
    Slipsager, Jakob M.
    Glimberg, Stefan L.
    Hojgaard, Liselotte
    Paulsen, Rasmus R.
    Wighton, Paul
    Tisdall, M. Dylan
    Jaimes, Camilo
    Gagoski, Borjan A.
    Grant, P. Ellen
    van Der Kouwe, Andre
    Olesen, Oline V.
    Frost, Robert
    MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (02) : 629 - 645
  • [4] Prospective motion correction in functional MRI
    Zaitsev, Maxim
    Akin, Burak
    Levan, Pierre
    Knowles, Benjamin R.
    NEUROIMAGE, 2017, 154 : 33 - 42
  • [5] Advantages and limitations of prospective head motion compensation for MRI using an optical motion tracking device
    Dold, Christian
    Zaitsev, Maxim
    Speck, Oliver
    Firle, Evelyn A.
    Hennig, Juergen
    Sakas, Georgios
    ACADEMIC RADIOLOGY, 2006, 13 (09) : 1093 - 1103
  • [6] Comparison of prospective head motion correction with NMR field probes and an optical tracking system
    Eschelbach, Martin
    Aghaeifar, Ali
    Bause, Jonas
    Handwerker, Jonas
    Anders, Jens
    Engel, Eva-Maria
    Thielscher, Axel
    Scheffler, Klaus
    MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (01) : 719 - 729
  • [7] Correction of respiratory artifacts in MRI head motion estimates
    Fair, Damien A.
    Miranda-Dominguez, Oscar
    Snyder, Abraham Z.
    Perrone, Anders
    Earl, Eric A.
    Van, Andrew N.
    Koller, Jonathan M.
    Feczko, Eric
    Tisdall, M. Dylan
    van der Kouwe, Andre
    Klein, Rachel L.
    Mirro, Amy E.
    Hampton, Jacqueline M.
    Adeyemo, Babatunde
    Laumann, Timothy O.
    Gratton, Caterina
    Greene, Deanna J.
    Schlaggar, Bradley L.
    Hagler, Donald J., Jr.
    Watts, Richard
    Garavan, Hugh
    Barch, Deanna M.
    Nigg, Joel T.
    Petersen, Steven E.
    Dale, Anders M.
    Feldstein-Ewing, Sarah W.
    Nagel, Bonnie J.
    Dosenbach, Nico U. F.
    NEUROIMAGE, 2020, 208
  • [8] Reproduction of Motion Artifacts for Performance Analysis of Prospective Motion Correction in MRI
    Herbst, Michael
    Maclaren, Julian
    Lovell-Smith, Cris
    Sostheim, Rebecca
    Egger, Karl
    Harloff, Andreas
    Korvink, Jan
    Hennig, Juergen
    Zaitsev, Maxim
    MAGNETIC RESONANCE IN MEDICINE, 2014, 71 (01) : 182 - 190
  • [9] Prospective motion correction for brain MRI using spherical navigators
    Hewlett, Miriam
    Oran, Omer
    Liu, Junmin
    Drangova, Maria
    MAGNETIC RESONANCE IN MEDICINE, 2024, 91 (04) : 1528 - 1540
  • [10] Prospective motion correction in kidney MRI using FID navigators
    Ariyurek, Cemre
    Wallace, Tess E.
    Kober, Tobias
    Kurugol, Sila
    Afacan, Onur
    MAGNETIC RESONANCE IN MEDICINE, 2023, 89 (01) : 276 - 285