On the classification of gradient Ricci solitons

被引:135
|
作者
Petersen, Peter [1 ]
Wylie, William
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
CURVATURE; MANIFOLDS; RIGIDITY;
D O I
10.2140/gt.2010.14.2277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the only shrinking gradient solitons with vanishing Weyl tensor and Ricci tensor satisfying a weak integral condition are quotients of the standard ones S-n, Sn-1 x R and R-n. This gives a new proof of the Hamilton-Ivey-Perelman classification of 3-dimensional shrinking gradient solitons. We also show that gradient solitons with constant scalar curvature and suitably decaying Weyl tensor when noncompact are quotients of H-n, Hn-1 x R, R-n, Sn-1 x R or S-n
引用
收藏
页码:2277 / 2300
页数:24
相关论文
共 50 条
  • [1] Classification of gradient shrinking Ricci solitons with bounded Ricci curvature
    Yang, Fei
    Wang, Zijun
    Zhang, Liangdi
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 71
  • [2] CLASSIFICATION OF GRADIENT EXPANDING AND STEADY RICCI SOLITONS
    Yang, Fei
    Fang, Shouwen
    Zhang, Liangdi
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 301 (01) : 371 - 384
  • [3] On the classification of four-dimensional gradient Ricci solitons
    Yang, Fei
    Zhang, Liangdi
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 84
  • [4] Classification of Gradient Ricci Solitons with Harmonic Weyl Curvature
    Kim, Jongsu
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (05)
  • [5] Ricci Solitons and Gradient Ricci Solitons in a Kenmotsu Manifolds
    De, Uday Chand
    Matsuyama, Yoshio
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) : 691 - 697
  • [6] On Gradient Ricci Solitons
    Munteanu, Ovidiu
    Sesum, Natasa
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) : 539 - 561
  • [7] On Gradient Ricci Solitons
    Ovidiu Munteanu
    Natasa Sesum
    Journal of Geometric Analysis, 2013, 23 : 539 - 561
  • [8] Classification of gradient steady Ricci solitons with linear curvature decay
    Yuxing Deng
    Xiaohua Zhu
    Science China(Mathematics), 2020, 63 (01) : 135 - 154
  • [9] Classification of gradient steady Ricci solitons with linear curvature decay
    Yuxing Deng
    Xiaohua Zhu
    Science China Mathematics, 2020, 63 : 135 - 154
  • [10] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458