Bounds on the Parameters of Locally Recoverable Codes

被引:98
|
作者
Tamo, Itzhak [1 ,2 ]
Barg, Alexander [3 ,4 ,5 ]
Frolov, Alexey [4 ,6 ]
机构
[1] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
[2] Tel Aviv Univ, Dept Elect Engn Syst, IL-39040 Tel Aviv, Israel
[3] Univ Maryland, Syst Res Inst, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[4] Russian Acad Sci, IITP, Moscow 127051, Russia
[5] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
[6] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
基金
俄罗斯科学基金会; 美国国家科学基金会;
关键词
Availability problem; asymptotic bounds; Gilbert-Varshamov bound; graph expansion; recovery graph;
D O I
10.1109/TIT.2016.2518663
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A locally recoverable code (LRC code) is a code over a finite alphabet, such that every symbol in the encoding is a function of a small number of other symbols that form a recovering set. In this paper, we derive new finite-length and asymptotic bounds on the parameters of LRC codes. For LRC codes with a single recovering set for every coordinate, we derive an asymptotic Gilbert-Varshamov type bound for LRC codes and find the maximum attainable relative distance of asymptotically good LRC codes. Similar results are established for LRC codes with two disjoint recovering sets for every coordinate. For the case of multiple recovering sets (the availability problem), we derive a lower bound on the parameters using expander graph arguments. Finally, we also derive finite-length upper bounds on the rate and the distance of LRC codes with multiple recovering sets.
引用
收藏
页码:3070 / 3083
页数:14
相关论文
共 50 条
  • [1] Bounds on the Size of Locally Recoverable Codes
    Cadambe, Viveck R.
    Mazumdar, Arya
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (11) : 5787 - 5794
  • [2] Bounds on Locally Recoverable Codes with Multiple Recovering Sets
    Tamo, Itzhak
    Barg, Alexander
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 691 - 695
  • [3] New Bounds and Generalizations of Locally Recoverable Codes With Availability
    Kruglik, Stanislav
    Nazirkhanova, Kamilla
    Frolov, Alexey
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (07) : 4156 - 4166
  • [4] Combinatorial Alphabet-Dependent Bounds for Locally Recoverable Codes
    Agarwal, Abhishek
    Barg, Alexander
    Hu, Sihuang
    Mazumdar, Arya
    Tamo, Itzhak
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (05) : 3481 - 3492
  • [5] New upper bounds and constructions of multi-erasure locally recoverable codes
    Li, Fagang
    Chen, Hao
    Lao, Huimin
    Lyu, Shanxiang
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (03): : 513 - 528
  • [6] New upper bounds and constructions of multi-erasure locally recoverable codes
    Fagang Li
    Hao Chen
    Huimin Lao
    Shanxiang Lyu
    Cryptography and Communications, 2023, 15 : 513 - 528
  • [7] Locally Recoverable Codes on Surfaces
    Salgado, Cecilia
    Varilly-Alvarado, Anthony
    Voloch, Jose Felipe
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (09) : 5765 - 5777
  • [8] Capacity of Locally Recoverable Codes
    Mazumdar, Arya
    2018 IEEE INFORMATION THEORY WORKSHOP (ITW), 2018, : 350 - 354
  • [9] A Family of Optimal Locally Recoverable Codes
    Tamo, Itzhak
    Barg, Alexander
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 686 - 690
  • [10] A construction of optimal locally recoverable codes
    Li, Xiaoru
    Heng, Ziling
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (03): : 553 - 563