Nonlinear evolution of cylindrical gravitational waves: Numerical method and physical aspects

被引:9
|
作者
Celestino, Juliana [1 ]
de Oliveira, H. P. [1 ,2 ]
Rodrigues, E. L. [3 ]
机构
[1] Univ Estado Rio de Janeiro, Dept Fis Teor, Inst Fis AD Tavares, R Sao Francisco Xavier 524, BR-20550013 Rio De Janeiro, RJ, Brazil
[2] Univ Pittsburgh, Dept Phys & Astron, 100 Allen Hall,3941 OHara St, Pittsburgh, PA 15260 USA
[3] Univ Fed Estado Rio de Janeiro, Inst Biociencias, Dept Ciencias Nat, Ave Pasteur,458 Urca, BR-22290040 Rio De Janeiro, RJ, Brazil
关键词
GENERAL-RELATIVITY; COLLAPSE; SYMMETRY; STRINGS; SYSTEMS; ENERGY; CAUCHY; SHELL; SPACE; DUST;
D O I
10.1103/PhysRevD.93.104018
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
General cylindrical waves are the simplest axisymmetrical gravitational waves that contain both + and x modes of polarization. In this paper, we have studied the evolution of general cylindrical gravitational waves in the realm of the characteristic scheme with a numerical code based on the Galerkin-Collocation method. The investigation consists of the numerical realization of concepts such as Bondi mass and the news functions adapted to cylindrical symmetry. The Bondi mass decays due to the presence of the news functions associated with both polarization modes. We have interpreted each polarization mode as channels from which mass is extracted. Under this perspective, we have presented the enhancement effect of the polarization mode + due to the nonlinear interaction with the mode x. After discussing the role of matter in cylindrical symmetry, we have extended the numerical code to include electromagnetic fields.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Galerkin-collocation domain decomposition method: application to the evolution of cylindrical gravitational waves
    Barreto, W. O.
    Crespo, J. A.
    de Oliveira, H. P.
    Rodrigues, E. L.
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (21)
  • [2] GENERAL NUMERICAL-SOLUTION OF CYLINDRICAL GRAVITATIONAL-WAVES
    PIRAN, T
    SAFIER, PN
    STARK, RF
    PHYSICAL REVIEW D, 1985, 32 (12): : 3101 - 3107
  • [3] NUMERICAL-SIMULATION OF NONLINEAR GRAVITATIONAL-WAVES
    HAACK, C
    SCHLEGEL, V
    MAHRENHOLTZ, O
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1992, 72 (05): : T327 - T329
  • [4] Cylindrical collapse and gravitational waves
    Herrera, L
    Santos, NO
    CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (12) : 2407 - 2413
  • [5] CYLINDRICAL GRAVITATIONAL-WAVES
    WOODHOUSE, NMJ
    CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (06) : 933 - 943
  • [6] QUANTIZED CYLINDRICAL GRAVITATIONAL WAVES
    KUCHAR, K
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (04): : 660 - &
  • [7] A Numerical Method for Nonlinear Water Waves
    Xi-zeng Zhao
    Zhao-chen Sun
    Shu-xiu Liang
    Chang-hong Hu
    Journal of Hydrodynamics, 2009, 21 : 401 - 407
  • [8] A NUMERICAL METHOD FOR NONLINEAR WATER WAVES
    ZHAO Xi-zeng State Key Laboratory of Coastal and Offshore Engineering
    Journal of Hydrodynamics, 2009, 21 (03) : 401 - 407
  • [9] A NUMERICAL METHOD FOR NONLINEAR WATER WAVES
    Zhao Xi-zeng
    Sun Zhao-chen
    Liang Shu-xiu
    Hu Chang-hong
    JOURNAL OF HYDRODYNAMICS, 2009, 21 (03) : 401 - 407
  • [10] A numerical method for nonlinear water waves
    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China
    不详
    不详
    J Hydrodyn, 1600, 3 (401-407):