Phase diagrams of polymer-containing liquid mixtures with a theory-embedded neural network

被引:11
|
作者
Nakamura, Issei [1 ]
机构
[1] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
来源
NEW JOURNAL OF PHYSICS | 2020年 / 22卷 / 01期
关键词
phase separation; polymer solution; artificial neural network; block copolymer electrolyte; polymer physics; liquid mixture; order-order phase transition; PREDICTION; TRANSITIONS; SYSTEMS; SEPARATION; BEHAVIOR;
D O I
10.1088/1367-2630/ab68fc
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a deep neural network (DNN) that accounts for the phase behaviors of polymer-containing liquid mixtures. The key component in the DNN consists of a theory-embedded layer that captures the characteristic features of the phase behavior via coarse-grained mean-field theory and scaling laws and substantially enhances the accuracy of the DNN. Moreover, this layer enables us to reduce the size of the DNN for the phase diagrams of the mixtures. This study also presents the predictive power of the DNN for the phase behaviors of polymer solutions and salt-free and salt-doped diblock copolymer melts.
引用
收藏
页数:8
相关论文
共 50 条