Evaluating the effect of magnetocaloric properties on magnetic refrigeration performance

被引:58
|
作者
Engelbrecht, K. [1 ]
Bahl, C. R. H. [1 ]
机构
[1] Riso Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark
关键词
DESIGN; LA(FE;
D O I
10.1063/1.3525647
中图分类号
O59 [应用物理学];
学科分类号
摘要
Active magnetic regenerator (AMR) refrigerators represent an alternative to vapor compression technology that relies on the magnetocaloric effect in a solid refrigerant. Magnetocaloric materials are in development and properties are reported regularly. Recently, there has been an emphasis on developing materials with a high entropy change with magnetization while placing lower emphasis on the adiabatic temperature change. This work uses model magnetocaloric materials and a numerical AMR model to predict how the temperature change and entropy change with magnetization interact and how they affect the performance of a practical system. The distribution of the magnetocaloric effect as a function of temperature was also studied. It was found that the adiabatic temperature change in a magnetocaloric material can be more important than the isothermal entropy change for certain conditions. A material that exhibits a sharp peak in isothermal entropy change was shown to produce a significantly lower cooling power than a material with a wide peak in a practical AMR system. (C) 2010 American Institute of Physics. [doi:10.1063/1.3525647]
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Magnetocaloric effect and magnetic refrigeration
    Pecharsky, VK
    Gschneidner, KA
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 200 (1-3) : 44 - 56
  • [2] Magnetocaloric effect and magnetic refrigeration
    Pecharsky, Vitalij K.
    Gschneidner Jr., Karl A.
    Journal of Magnetism and Magnetic Materials, 1999, 200 (01): : 44 - 56
  • [3] High performance magnetocaloric perovskites for magnetic refrigeration
    Bahl, Christian R. H.
    Velazquez, David
    Nielsen, Kaspar K.
    Engelbrecht, Kurt
    Andersen, Kjeld B.
    Bulatova, Regina
    Pryds, Nini
    APPLIED PHYSICS LETTERS, 2012, 100 (12)
  • [4] Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration
    Romero Gomez, J.
    Ferreiro Garcia, R.
    De Miguel Catoira, A.
    Romero Gomez, M.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 17 : 74 - 82
  • [5] Magnetocaloric effect in manganites: Metamagnetic transitions for magnetic refrigeration
    Quintero, M.
    Sacanell, J.
    Ghivelder, L.
    Gomes, A. M.
    Leyva, A. G.
    Parisi, F.
    APPLIED PHYSICS LETTERS, 2010, 97 (12)
  • [6] The magnetocaloric effect, magnetic refrigeration and ductile intermetallic compounds
    Gschneidner, K. A., Jr.
    ACTA MATERIALIA, 2009, 57 (01) : 18 - 28
  • [7] The impact of magnetocaloric properties on refrigeration performance and machine design
    Benedict, M. A.
    Sherif, S. A.
    Schroeder, M.
    Beers, D. G.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2017, 74 : 576 - 583
  • [8] Design and development of magnetic refrigeration prototype for the performance analysis of magnetocaloric materials
    Kanluang, T.
    Hanlumyuang, Y.
    Techapiesancharoenkij, R.
    SIAM PHYSICS CONGRESS 2018 (SPC2018): A CREATIVE PATH TO SUSTAINABLE INNOVATION, 2018, 1144
  • [9] Introduction to magnetic refrigeration: magnetocaloric materials
    Souheila Mellari
    International Journal of Air-Conditioning and Refrigeration, 31