Using the bees algorithm with Kalman filtering to train an artificial neural network for pattern classification

被引:18
|
作者
Pham, D. T. [1 ]
Darwish, A. Haj [1 ]
机构
[1] Cardiff Univ, Mfg Engn Ctr, Cardiff CF24 3AA, S Glam, Wales
关键词
bees algorithm; fuzzy logic; Kalman filter; neural network; pattern classification; DESIGN;
D O I
10.1243/09596518JSCE1004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The current paper presents the use of the bees algorithm with Kalman filtering to train a radial basis function (RBF) neural network. An enhanced fuzzy selection system has been developed to choose local search sites depending on the error and training accuracy of the RBF network. The paper provides comparative results obtained when applying RBF neural classifiers trained using the new bees algorithm, the original bees algorithm, and the conventional RBF procedure to an industrial pattern classification problem.
引用
收藏
页码:885 / 892
页数:8
相关论文
共 50 条
  • [1] A LEARNING ALGORITHM OF THE NEURAL NETWORK BASED ON KALMAN FILTERING
    HUANG, T
    TSUYUKI, M
    YASUHARA, M
    IEICE TRANSACTIONS ON COMMUNICATIONS ELECTRONICS INFORMATION AND SYSTEMS, 1991, 74 (05): : 1059 - 1065
  • [2] Training of neural network for pattern classification using fireworks algorithm
    Bolaji, Asaju La'aro
    Ahmad, Aminu Ali
    Shola, Peter Bamidele
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2018, 9 (01) : 208 - 215
  • [3] An Artificial Neural Network Based Pattern Classification Algorithm for Diagnosis of Heart Disease
    Tarle, Balasaheb
    Jena, Sudarson
    2017 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA), 2017,
  • [4] Water level forecasting using a hybrid algorithm of artificial neural networks and local Kalman filtering
    Zhong, Cheng
    Jiang, Zhonglian
    Chu, Xiumin
    Guo, Tao
    Wen, Quan
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART M-JOURNAL OF ENGINEERING FOR THE MARITIME ENVIRONMENT, 2019, 233 (01) : 174 - 185
  • [5] Using Bees Algorithm and Artificial Neural Network to Forecast World Carbon Dioxide Emission
    Behrang, M. A.
    Assareh, E.
    Assari, M. R.
    Ghanbarzadeh, A.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2011, 33 (19) : 1747 - 1759
  • [6] Optimized Artificial Neural Network for Biosignals Classification Using Genetic Algorithm
    Lima, Aron A. M.
    de Barros, Fabio K. H.
    Yoshizumi, Victor H.
    Spatti, Danilo H.
    Dajer, Maria E.
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2019, 30 (03) : 371 - 379
  • [7] Artificial Neural Network Training Using Differential Evolutionary Algorithm for Classification
    Si, Tapas
    Hazra, Simanta
    Jana, N. D.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS 2012 (INDIA 2012), 2012, 132 : 769 - 778
  • [8] A Novel Artificial Neural Network (ANN) Using The Mayfly Algorithm for Classification
    Moosavi, Syed Kumayl Raza
    Zafar, Muhammad Hamza
    Akhter, Malik Naveed
    Hadi, Shahzaib Farooq
    Khan, Noman Mujeeb
    Sanfilippo, Filippo
    2021 INTERNATIONAL CONFERENCE ON DIGITAL FUTURES AND TRANSFORMATIVE TECHNOLOGIES (ICODT2), 2021,
  • [9] Optimized Artificial Neural Network for Biosignals Classification Using Genetic Algorithm
    Aron A. M. Lima
    Fábio K. H. de Barros
    Victor H. Yoshizumi
    Danilo H. Spatti
    Maria E. Dajer
    Journal of Control, Automation and Electrical Systems, 2019, 30 : 371 - 379
  • [10] Artificial neural network optimization using differential evolution algorithm with adaptive weight bound adjustment for pattern classification
    Limtrakul, Saithip
    Wetweerapong, Jeerayut
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2023, 18 (03): : 415 - 427