Operator Khintchine inequality in non-commutative probability

被引:41
|
作者
Buchholz, A [1 ]
机构
[1] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
关键词
D O I
10.1007/PL00004425
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the operator T = [GRAPHICS] A(k) x R-k, where A(k) belongs to the Schatten class S-2n and where R-k are non-commutative random variables with mixed moments satisfying a specific condition, we prove the following Khintchine inequality [GRAPHICS] We find the optimal constants D-2n in the case when R-k are the q-Gaussian and circular random variables. Moreover, we show that the moments of any probability symmetric measure appear as the optimal constants for some random variables.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条