Algebraic properties on the cuts of lattice-valued regular languages

被引:2
|
作者
Liang, Changjian [1 ,2 ]
Li, Yongming [1 ,3 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
[2] Shangqiu Normal Univ, Coll Software, Shangqiu 476000, Peoples R China
[3] Shaanxi Normal Univ, Coll Comp Sci, Xian 710062, Peoples R China
基金
中国国家自然科学基金;
关键词
fuzzy languages; lattice-valued regular languages; closure properties; level structure;
D O I
10.1007/s00500-007-0271-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the algebraic operations on the cuts of lattice-valued regular languages are studied. Some sufficient conditions are given to guarantee the family of the cuts of lattice-valued regular languages to be closed under such algebraic operations as union, intersection, complement, quotient, homomorphism, inverse homomorphism, concatennation, reversal, etc.
引用
收藏
页码:1049 / 1057
页数:9
相关论文
共 50 条
  • [1] Algebraic properties on the cuts of lattice-valued regular languages
    Changjian Liang
    Yongming Li
    Soft Computing, 2008, 12 : 1049 - 1057
  • [2] Algebraic Study of Lattice-Valued Logic and Lattice-Valued Modal Logic
    Maruyama, Yoshihiro
    LOGIC AND ITS APPLICATIONS, 2009, 5378 : 170 - 184
  • [3] Lattice-valued finite automata and their languages
    Li, YM
    8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XIV, PROCEEDINGS: COMPUTER AND INFORMATION SYSTEMS, TECHNOLOGIES AND APPLICATIONS, 2004, : 213 - 218
  • [4] Isotone lattice-valued Boolean functions and cuts
    Horvath E.K.
    Seselja B.
    Tepavcevic A.
    Acta Scientiarum Mathematicarum, 2015, 81 (3-4): : 375 - 380
  • [5] A Note on Cuts of Lattice-Valued Functions and Concept Lattices
    Horvath, Eszter K.
    Radeleczki, Sandor
    Seselja, Branimir
    Tepavcevic, Andreja
    MATHEMATICA SLOVACA, 2023, 73 (03) : 583 - 594
  • [6] Coding tree languages based on lattice-valued logic
    Ghorani, M.
    Zahedi, M. M.
    SOFT COMPUTING, 2017, 21 (14) : 3815 - 3825
  • [7] Coding tree languages based on lattice-valued logic
    M. Ghorani
    M. M. Zahedi
    Soft Computing, 2017, 21 : 3815 - 3825
  • [8] On the algebraic structure of binary lattice-valued fuzzy relations
    Xiaodong Pan
    Yang Xu
    Soft Computing, 2013, 17 : 411 - 420
  • [9] On the algebraic structure of binary lattice-valued fuzzy relations
    Pan, Xiaodong
    Xu, Yang
    SOFT COMPUTING, 2013, 17 (03) : 411 - 420
  • [10] LATTICE-VALUED CATEGORIES OF LATTICE-VALUED CONVERGENCE SPACES
    Jaeger, G.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2011, 8 (02): : 67 - 89