Conditional Akaike information for mixed-effects models

被引:407
作者
Vaida, F [1 ]
Blanchard, S
机构
[1] Univ Calif San Diego, Sch Med, Dept Family & Prevent Med, Div Biostat, La Jolla, CA 92093 USA
[2] Frontier Sci & Technol Res Fdn Inc, Boston, MA 02215 USA
基金
美国国家卫生研究院;
关键词
Akaike information; AIC; effective degrees of freedom; linear mixed model;
D O I
10.1093/biomet/92.2.351
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper focuses on the Akaike information criterion, AIC, for linear mixed-effects models in the analysis of clustered data. We make the distinction between questions regarding the population and questions regarding the particular clusters in the data. We show that the AIC in current use is not appropriate for the focus on clusters, and we propose instead the conditional Akaike information and its corresponding criterion, the conditional AIC, cAIC. The penalty term in cAIC is related to the effective degrees of freedom p for a linear mixed model proposed by Hodges & Sargent (2001); p reflects an intermediate level of complexity between a fixed-effects model with no cluster effect and a corresponding model with fixed cluster effects. The cAIC is defined for both maximum likelihood and residual maximum likelihood estimation. A pharmacokinetics data application is used to illuminate the distinction between the two inference settings, and to illustrate the use of the conditional AIC in model selection.
引用
收藏
页码:351 / 370
页数:20
相关论文
共 24 条
[1]  
Akaike H., 1973, 2 INT S INFORM THEOR, P267, DOI [DOI 10.1007/978-1-4612-1694-0_15, 10.1007/978-1-4612-1694-0_15]
[2]   Statistical modeling: The two cultures [J].
Breiman, L .
STATISTICAL SCIENCE, 2001, 16 (03) :199-215
[3]  
Burnham K. P., 2002, MODEL SELECTION MULT
[4]   Evaluation of some random effects methodology applicable to bird ringing data [J].
Burnham, KP ;
White, GC .
JOURNAL OF APPLIED STATISTICS, 2002, 29 (1-4) :245-264
[5]  
deLeeuw J., 1992, Breakthroughs in Statistics: Foundations and Basic Theory, P599, DOI DOI 10.1007/978-1-4612-0919-5_37
[6]  
DURBIN J, 1950, BIOMETRIKA, V37, P409, DOI 10.1093/biomet/37.3-4.409
[7]   Flexible smoothing with B-splines and penalties [J].
Eilers, PHC ;
Marx, BD .
STATISTICAL SCIENCE, 1996, 11 (02) :89-102
[8]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[9]  
Gelman A, 2003, BAYESIAN DATA ANAL
[10]  
HARVILLE DA, 1977, J AM STAT ASSOC, V72, P320, DOI 10.2307/2286796