Geometry of α-Cosymplectic Metric as *-Conformal η-Ricci-Yamabe Solitons Admitting Quarter-Symmetric Metric Connection

被引:8
|
作者
Zhang, Pengfei [1 ]
Li, Yanlin [2 ]
Roy, Soumendu [3 ]
Dey, Santu [4 ]
机构
[1] Harbin Normal Univ, Coll Teacher Educ, Harbin 150025, Peoples R China
[2] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[3] Jadavpur Univ, Dept Math, Kolkata 700032, India
[4] Bidhan Chandra Coll, Dept Math, Asansol 713304 4, Rishra, India
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 11期
基金
中国国家自然科学基金;
关键词
Ricci-Yamabe soliton; *-conformal eta-Ricci-Yamabe soliton; conformal killing vector field; alpha-cosymplectic manifolds; K-CONTACT; SUBMANIFOLDS; CURVATURE; THEOREMS; CURRENTS; COMPACT;
D O I
10.3390/sym13112189
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The outline of this research article is to initiate the development of a *-conformal eta-Ricci-Yamabe soliton in alpha-Cosymplectic manifolds according to the quarter-symmetric metric connection. Here, we have established some curvature properties of alpha-Cosymplectic manifolds in regard to the quarter-symmetric metric connection. Further, the attributes of the soliton when the manifold gratifies a quarter-symmetric metric connection have been displayed in this article. Later, we picked up the Laplace equation from *-conformal eta-Ricci-Yamabe soliton equation when the potential vector field xi of the soliton is of gradient type, admitting quarter-symmetric metric connection. Next, we evolved the nature of the soliton when the vector field's conformal killing reveals a quarter-symmetric metric connection. We show an example of a 5-dimensional alpha-cosymplectic metric as a *-conformal eta-Ricci-Yamabe soliton acknowledges quarter-symmetric metric connection to prove our results.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] CONFORMAL η-RICCI-YAMABE SOLITONS ON SUBMANIFOLDS OF AN (LCS )n-MANIFOLD ADMITTING A QUARTER-SYMMETRIC METRIC CONNECTION
    Yadav, Sunil Kumar
    Haseeb, Abdul
    Yildiz, Ahmet
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (03): : 611 - 629
  • [2] PARA-SASAKIAN MANIFOLD ADMITTING RICCI-YAMABE SOLITONS WITH QUARTER SYMMETRIC METRIC CONNECTION
    Vandana
    Budhiraja, Rajeev
    Ahmad, Kamran
    Siddiqui, Aliya Naaz
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2024, 39 (03): : 493 - 505
  • [3] Quarter-Symmetric Metric Connection on a Cosymplectic Manifold
    Maksimovic, Miroslav D. D.
    Zlatanovic, Milan Lj.
    MATHEMATICS, 2023, 11 (09)
  • [4] Almost Pseudo Symmetric Kahler Manifolds Admitting Conformal Ricci-Yamabe Metric
    Yadav, Sunil Kumar
    Haseeb, Abdul
    Jamal, Nargis
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [5] Kahlerian Norden spacetime admitting conformal η-Ricci-Yamabe metric
    Yadav, S. K.
    Suthar, D. L.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (14)
  • [6] On a Ricci Quarter-Symmetric Metric Recurrent Connection and a Projective Ricci Quarter-Symmetric Metric Recurrent Connection in a Riemannian Manifold
    Zhao, Di
    Jen, Cholyong
    Ho, Talyun
    FILOMAT, 2020, 34 (03) : 795 - 806
  • [7] SUBMANIFOLDS OF A RIEMANNIAN MANIFOLD ADMITTING A TYPE OF RICCI QUARTER-SYMMETRIC METRIC CONNECTION
    Mondal, Abul Kalam
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (04): : 577 - 586
  • [8] η-RICCI SOLITONS ON ε - LP-SASAKIAN MANIFOLDS WITH A QUARTER-SYMMETRIC METRIC CONNECTION
    Haseeb, Abdul
    Prasad, Rajendra
    HONAM MATHEMATICAL JOURNAL, 2019, 41 (03): : 539 - 558
  • [9] QUARTER-SYMMETRIC METRIC CONNECTION
    RASTOGI, SC
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1978, 31 (07): : 811 - 814
  • [10] On Ricci solitons with quarter-symmetric connection
    Lone, Mehraj Ahmad
    Harry, Idrees Fayaz
    RICERCHE DI MATEMATICA, 2024,