Triangulation Learning Network: from Monocular to Stereo 3D Object Detection

被引:84
|
作者
Qin, Zengyi [1 ]
Wang, Jinglu [2 ]
Lu, Yan [2 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] Microsoft Res, Beijing, Peoples R China
关键词
D O I
10.1109/CVPR.2019.00780
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study the problem of 3D object detection from stereo images, in which the key challenge is how to effectively utilize stereo information. Different from previous methods using pixel-level depth maps, we propose employing 3D anchors to explicitly construct object-level correspondences between the regions of interest in stereo images, from which the deep neural network learns to detect and triangulate the targeted object in 3D space. We also introduce a cost-efficient channel reweighting strategy that enhances representational features and weakens noisy signals to facilitate the learning process. All of these are flexibly integrated into a solid baseline detector that uses monocular images. We demonstrate that both the monocular baseline and the stereo triangulation learning network outperform the prior state-of-the-arts in 3D object detection and localization on the challenging KITTI dataset.
引用
收藏
页码:7607 / 7615
页数:9
相关论文
共 50 条
  • [1] MonoSG: Monocular 3D Object Detection With Stereo Guidance
    Fan, Zhiwei
    Xu, Chao
    Chu, Minghang
    Huang, Yuling
    Ma, Yaoyao
    Wang, Jing
    Xu, Yishen
    Wu, Di
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (04): : 3604 - 3611
  • [2] SGM3D: Stereo Guided Monocular 3D Object Detection
    Zhou, Zheyuan
    Du, Liang
    Ye, Xiaoqing
    Zou, Zhikang
    Tan, Xiao
    Zhang, Li
    Xue, Xiangyang
    Feng, Jianfeng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 10478 - 10485
  • [3] Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving
    Chen, Yi-Nan
    Dai, Hang
    Ding, Yong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 877 - 887
  • [4] A New Monocular 3D Object Detection with Neural Network
    Hong, Weijie
    Liu, Yiguang
    Zheng, Yunan
    Wang, Ying
    Shi, Xuelei
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT IV, 2018, 11259 : 174 - 185
  • [5] Learning Auxiliary Monocular Contexts Helps Monocular 3D Object Detection
    Liu, Xianpeng
    Xue, Nan
    Wu, Tianfu
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 1810 - 1818
  • [6] MSL3D: 3D object detection from monocular, stereo and point cloud for autonomous driving
    Chen, Wenyu
    Li, Peixuan
    Zhao, Huaici
    NEUROCOMPUTING, 2022, 494 : 23 - 32
  • [7] Geometry Uncertainty Projection Network for Monocular 3D Object Detection
    Lu, Yan
    Ma, Xinzhu
    Yang, Lei
    Zhang, Tianzhu
    Liu, Yating
    Chu, Qi
    Yan, Junjie
    Ouyang, Wanli
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3091 - 3101
  • [8] Depth-enhancement network for monocular 3D object detection
    Liu, Guohua
    Lian, Haiyang
    Guo, Changrui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (09)
  • [9] Categorical Depth Distribution Network for Monocular 3D Object Detection
    Reading, Cody
    Harakeh, Ali
    Chae, Julia
    Waslander, Steven L.
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8551 - 8560
  • [10] DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection
    Kumar, Abhinav
    Brazil, Garrick
    Corona, Enrique
    Parchami, Armin
    Liu, Xiaoming
    COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 : 664 - 683