Evaluating Deep Neural Networks for Automatic Fake News Detection in Political Domain

被引:7
|
作者
Fernandez-Reyes, Francis C. [1 ]
Shinde, Suraj [1 ]
机构
[1] Everis AI Digital Lab, Mexico City 06600, DF, Mexico
来源
ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2018 | 2018年 / 11238卷
关键词
Deep neural network; Fake news detection; Multi-class text classifier;
D O I
10.1007/978-3-030-03928-8_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fake news has become a hot trending topic after the latest U.S. presidential elections when Donald Trump took office. The political speech during the presidential campaign was plagued with half-truths, falsehoods, and click-baits, creating confusion for the voters. Several algorithms have been designed to tackle the automatic fake news detection problem, but some issues still remain uncovered. Some approaches address the problem from a perspective where the website reputation is used as part of their analysis. Typical algorithms take into account text patterns and statistics for automatic fake news detection. Commonly, the fake news detection problem is treated as a multi-class text classifier. This paper proposes several deep neural architectures to classify fake news in the political domain. Furthermore, we demonstrate that combining statements and credibility patterns of politicians are very important for detecting fake news in a deep neural network classifier. We have found that the information about the politician is very useful for any of the tested architectures.
引用
收藏
页码:206 / 216
页数:11
相关论文
共 50 条
  • [1] THE COMBINATION OF CONVOLUTION NEURAL NETWORKS AND DEEP NEURAL NETWORKS FOR FAKE NEWS DETECTION
    Jawad, Zainab A.
    Obaid, Ahmed J.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2023, 18 (01): : 814 - 826
  • [2] FAKE NEWS DETECTION USING DEEP RECURRENT NEURAL NETWORKS
    Jiang, Tao
    Li, Jian Ping
    Ul Haq, Amin
    Saboor, Abdus
    2020 17TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2020, : 205 - 208
  • [3] Fake news detection using dual BERT deep neural networks
    Farokhian, Mahmood
    Rafe, Vahid
    Veisi, Hadi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 43831 - 43848
  • [4] Fake news detection using dual BERT deep neural networks
    Mahmood Farokhian
    Vahid Rafe
    Hadi Veisi
    Multimedia Tools and Applications, 2024, 83 : 43831 - 43848
  • [5] Fake News Detection Using a Blend of Neural Networks: An Application of Deep Learning
    Agarwal A.
    Mittal M.
    Pathak A.
    Goyal L.M.
    SN Computer Science, 2020, 1 (3)
  • [6] A deep learning approach for automatic detection of fake news
    Saikh, Tanik
    De, Arkadipta
    Ekbal, Asif
    Bhattacharyya, Pushpak
    arXiv, 2020,
  • [7] Political Ideology Detection of News Articles Using Deep Neural Networks
    Alzhrani, Khudran M.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 33 (01): : 483 - 500
  • [8] Automatic Fake News Detection based on Deep Learning, FastText and News Title
    Taher, Youssef
    Moussaoui, Adelmoutalib
    Moussaoui, Fouad
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (01) : 146 - 158
  • [9] FNDNet - A deep convolutional neural network for fake news detection
    Kaliyar, Rohit Kumar
    Goswami, Anurag
    Narang, Pratik
    Sinha, Soumendu
    COGNITIVE SYSTEMS RESEARCH, 2020, 61 : 32 - 44
  • [10] Deep Diffusive Neural Network based Fake News Detection from Heterogeneous Social Networks
    Zhang, Jiawei
    Dong, Bowen
    Yu, Philip S.
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 1259 - 1266