Comparison and Extremal Results on Three Eccentricity-based Invariants of Graphs

被引:7
|
作者
Xu, Ke Xiang [1 ]
Das, Kinkar Chandra [2 ]
Gu, Xiao Qian [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 210016, Peoples R China
[2] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
Eccentricity (of vertex); first Zagreb eccentricity index; second Zagreb eccentricity index; eccentric complexity; diameter; TOPOLOGICAL INDEXES; MOLECULAR-ORBITALS;
D O I
10.1007/s10114-019-8439-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first and second Zagreb eccentricity indices of graph G are defined as: E1(G)= n-ary sumation vi is an element of V(G)epsilon G(vi)2, E2(G)= n-ary sumation vivj is an element of E(G)epsilon G(vi)epsilon G(vj) where epsilon(G)(upsilon(i)) denotes the eccentricity of vertex upsilon(i) in G. The eccentric complexity C-ec(G) of G is the number of different eccentricities of vertices in G. In this paper we present some results on the comparison between E1(G)n and E2(G)m for any connected graphs G of order n with m edges, including general graphs and the graphs with given C-ec. Moreover, a Nordhaus-Gaddum type result C-ec(G) + C-ec(G) is determined with extremal graphs at which the upper and lower bounds are attained respectively.
引用
收藏
页码:40 / 54
页数:15
相关论文
共 50 条
  • [1] Comparison and Extremal Results on Three Eccentricity-based Invariants of Graphs
    Ke Xiang XU
    Kinkar Chandra DAS
    Xiao Qian GU
    Acta Mathematica Sinica,English Series, 2020, (01) : 40 - 54
  • [2] Comparison and Extremal Results on Three Eccentricity-based Invariants of Graphs
    Ke Xiang XU
    Kinkar Chandra DAS
    Xiao Qian GU
    ActaMathematicaSinica, 2020, 36 (01) : 40 - 54
  • [3] Comparison and Extremal Results on Three Eccentricity-based Invariants of Graphs
    Ke Xiang Xu
    Kinkar Chandra Das
    Xiao Qian Gu
    Acta Mathematica Sinica, English Series, 2020, 36 : 40 - 54
  • [4] Eccentricity-Based Topological Invariants of Some Chemical Graphs
    Idrees, Nazeran
    Saif, Muhammad Jawwad
    Anwar, Tehmina
    ATOMS, 2019, 7 (01):
  • [5] Extremal trees of given segment sequence with respect to some eccentricity-based invariants
    Zhang, Minjie
    Wang, Chengyong
    Li, Shuchao
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 111 - 123
  • [6] COMPARING ECCENTRICITY-BASED GRAPH INVARIANTS
    Hua, Hongbo
    Wang, Hongzhuan
    Gutman, Ivan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (04) : 1111 - 1125
  • [7] On the eccentricity-based invariants of uniform hypergraphs
    Wang, Hongzhuan
    Yin, Piaoyang
    FILOMAT, 2024, 38 (01) : 325 - 342
  • [8] Comparison Between Two Eccentricity-based Topological Indices of Graphs
    Xu, Kexiang
    Li, Xia
    CROATICA CHEMICA ACTA, 2016, 89 (04) : 499 - 504
  • [9] An Analysis of Eccentricity-Based Invariants for Biochemical Hypernetworks
    Rashid M.A.
    Ahmad S.
    Siddiqui M.K.
    Manzoor S.
    Dhlamini M.
    Complexity, 2021, 2021
  • [10] Bounds for eccentricity-based parameters of graphs
    Tang, Yunfang
    Qi, Xuli
    West, Douglas B.
    DISCRETE APPLIED MATHEMATICS, 2025, 362 : 109 - 123