Automated diagnosis of fetal alcohol syndrome using 3D facial image analysis

被引:35
|
作者
Fang, S. [1 ]
McLaughlin, J. [1 ]
Fang, J. [1 ]
Huang, J. [1 ]
Autti-Ramo, I. [2 ]
Fagerlund, A. [3 ,4 ]
Jacobson, S. W. [5 ]
Robinson, L. K. [6 ]
Hoyme, H. E. [7 ]
Mattson, S. N. [8 ]
Riley, E. [8 ]
Zhou, F. [9 ]
Ward, R. [10 ]
Moore, E. S. [10 ,11 ]
Foroud, T. [9 ]
机构
[1] Purdue Univ, Dept Comp Sci, Indianapolis, IN USA
[2] HUCH Hosp Children & Adolescents, Dept Child Neurol, Helsinki, Finland
[3] Folkhalsan Res Ctr, Helsinki, Finland
[4] Abo Akad Univ, Dept Psychol, Turku, Finland
[5] Wayne State Univ, Sch Med, Dept Psychiat & Behav Neurosci, Detroit, MI USA
[6] SUNY Buffalo, Sch Med & Biomed Sci, Buffalo, NY 14260 USA
[7] Stanford Univ, Sch Med, Stanford, CA 94305 USA
[8] San Diego State Univ, Dept Psychol, San Diego, CA 92182 USA
[9] Indiana Univ, Sch Med, Indianapolis, IN USA
[10] Indiana Univ, Sch Liberal Arts, Indianapolis, IN 46204 USA
[11] St Vincent Womens Hosp, Indianapolis, IN USA
关键词
fetal alcohol syndrome; geometric feature extraction; image analysis; machine learning; pattern classification;
D O I
10.1111/j.1601-6343.2008.00425.x
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Objectives - Use three-dimensional (3D) facial laser scanned images from children with fetal alcohol syndrome (FAS) and controls to develop an automated diagnosis technique that can reliably and accurately identify individuals prenatally exposed to alcohol. Methods - A detailed dysmorphology evaluation, history of prenatal alcohol exposure, and 3D facial laser scans were obtained from 149 individuals (86 FAS; 63 Control) recruited from two study sites (Cape Town, South Africa and Helsinki, Finland). Computer graphics, machine learning, and pattern recognition techniques were used to automatically identify a set of facial features that best discriminated individuals with FAS from controls in each sample. Results - An automated feature detection and analysis technique was developed and applied to the two study populations. A unique set of facial regions and features were identified for each population that accurately discriminated FAS and control faces without any human intervention. Conclusion - Our results demonstrate that computer algorithms can be used to automatically detect facial features that can discriminate FAS and control faces.
引用
收藏
页码:162 / 171
页数:10
相关论文
共 50 条
  • [1] Using 3D facial image analysis for diagnosis of fetal alcohol syndrome in mice
    Zhou, F. C.
    Fang, S.
    Anthony, B.
    Rodriguez, J.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2008, 32 (06) : 200A - 200A
  • [2] A Framework for 3D Analysis of Facial Morphology in Fetal Alcohol Syndrome
    Wan, Jing
    Shen, Li
    Fang, Shiaofen
    McLaughlin, Jason
    Autti-Ramo, Ilona
    Fagerlund, Ase
    Riley, Edward
    Hoyme, H. Eugene
    Moore, Elizabeth S.
    Foroud, Tatiana
    MEDICAL IMAGING AND AUGMENTED REALITY, 2010, 6326 : 118 - +
  • [3] An automatic FAS diagnosis technique using 3D facial image analysis
    Fang, S.
    Fang, J.
    Huang, J.
    Robinson, L.
    Mattson, S.
    Autti-Ramo, I.
    Hoyme, H. E.
    Jones, K. L.
    Foroud, T.
    Riley, E.
    Li, T. K.
    Moore, E.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2006, 30 (06) : 173A - 173A
  • [4] Utilizing 3D facial analysis to assess facial dysmorphism between systems for the diagnosis of fetal alcohol spectrum disorders
    Suttie, M.
    Coles, C. D.
    Kable, J. A.
    Bandoli, G.
    Campo, M.
    Chambers, C. D.
    ALCOHOL-CLINICAL AND EXPERIMENTAL RESEARCH, 2023, 47 : 300 - 300
  • [5] A Review of Facial Image Analysis for Delineation of the Facial Phenotype Associated With Fetal Alcohol Syndrome
    Douglas, Tania S.
    Mutsvangwa, Tinashe E. M.
    AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2010, 152A (02) : 528 - 536
  • [6] 3D Analysis of Philtrum Depth in Children with Fetal Alcohol Syndrome
    Blanck-Lubarsch, Moritz
    Dirksen, Dieter
    Feldmann, Reinhold
    Sauerland, Cristina
    Kirschneck, Christian
    Hohoff, Ariane
    ALCOHOL AND ALCOHOLISM, 2019, 54 (02): : 152 - 158
  • [7] IDENTIFYING FETAL ALCOHOL SYNDROME USING FACIAL SHAPE ANALYSIS
    Wetherill, L.
    Klingenberg, C. P.
    Rogers, J.
    Moore, E.
    Ward, R.
    Autti-Raemoe, I.
    Fagerlund, A.
    Jacobson, S. W.
    Mattson, S. N.
    Li, T. K.
    Riley, E. P.
    Foroud, T.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2009, 33 (06) : 130A - 130A
  • [8] EFFECTS OF FETAL ALCOHOL ON 3D FACIAL MORPHOLOGY USING SURFACE-BASED MORPHOMETRY
    Wan, J.
    Fang, S.
    Vinci-Booher, S.
    Rogers, J.
    Wetherill, L.
    Robinson, L.
    Hoyme, E.
    Molteno, C.
    Foroud, T.
    Jacobson, J.
    Jacobson, S.
    Shen, L.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2011, 35 (06) : 172A - 172A
  • [9] Automated 3D ultrasound image analysis for first trimester assessment of fetal health
    Ryou, Hosuk
    Yaqub, Mohammad
    Cavallaro, Angelo
    Papageorghiou, Aris T.
    Noble, J. Alison
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (18):
  • [10] Classification of fetal alcohol syndrome using combined 3-D facial imaging and neuropsychological data
    Mattson, S. N.
    Flury-Wetherill, L.
    Foroud, T.
    Rogers, J.
    Ward, R.
    Moore, E.
    Autti-Ramo, I.
    Korkman, M.
    Fagerlund, A.
    Riley, E. P.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2007, 31 (06) : 246A - 246A