size-structured population models;
difference schemes;
Runge-Kutta methods;
convergence;
D O I:
10.1016/S0025-5564(98)10081-0
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
We formulate schemes for the numerical solution of size-dependent population models. Such schemes discretize size by means of a natural grid, which introduces a discrete dynamics. The schemes are analysed and optimal rates of convergence are derived. Some numerical experiments are also reported to demonstrate the predicted accuracy of the schemes. (C) 1999 Elsevier Science Inc. All rights reserved.
机构:
Ecole Normale Super, INRIA Projet BANG, Dept Math & Applicat, F-75230 Paris 05, FranceEcole Normale Super, INRIA Projet BANG, Dept Math & Applicat, F-75230 Paris 05, France
Doumic, Marie
Perthame, Benoit
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, UMR LJLL 7598, BC187, F-75252 Paris, France
INRIA Rocquencourt, Projet BANG, F-781153 Rocquencourt, FranceEcole Normale Super, INRIA Projet BANG, Dept Math & Applicat, F-75230 Paris 05, France
Perthame, Benoit
Zubelli, Jorge P.
论文数: 0引用数: 0
h-index: 0
机构:
IMPA, BR-22460320 Rio De Janeiro, BrazilEcole Normale Super, INRIA Projet BANG, Dept Math & Applicat, F-75230 Paris 05, France