Oscillation theorems for general quasilinear second-order difference equations

被引:4
|
作者
Thandapani, E [1 ]
Ravi, K
Graef, JR
机构
[1] Periyar Univ, Dept Math, Salem 636011, Tamil Nadu, India
[2] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
关键词
difference equations; oscillation; quasilinear; second order;
D O I
10.1016/S0898-1221(01)00187-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors consider difference equations of the form Delta (a(n)(Deltay(n))(alpha)) + phi (n, y(n),Deltay(n)) + q(n)f(y(n+1)) = 0, where a(n) > 0, q(n) > 0, f, and phi are continuous real valued functions, and uf(u) > 0 for u not equal 0. They give oscillation results for equation (E). Examples are included to illustrate the results. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:687 / 694
页数:8
相关论文
共 50 条
  • [1] Oscillation theorems for second-order nonlinear difference equations
    Li, WT
    MATHEMATICAL AND COMPUTER MODELLING, 2000, 31 (6-7) : 71 - 79
  • [2] Oscillation of second-order quasilinear neutral delay difference equations
    Wang, Dong-mei
    Xu, Zhi-ting
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (01): : 93 - 104
  • [3] Oscillation and nonoscillation theorems for second order quasilinear functional difference equations
    Sundaram, P
    Thandapani, E
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2000, 31 (01): : 37 - 47
  • [4] Oscillation of second-order quasilinear neutral delay difference equations
    Dong-mei Wang
    Zhi-ting Xu
    Acta Mathematicae Applicatae Sinica, English Series, 2011, 27 : 93 - 104
  • [5] Oscillation Theorems for Second-Order Quasilinear Neutral Functional Differential Equations
    Sun, Shurong
    Li, Tongxing
    Han, Zhenlai
    Li, Hua
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [6] Oscillation theorems for second-order advanced functional difference equations
    Zhang, ZG
    Li, QL
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (06) : 11 - 18
  • [7] Oscillation theorems for second-order advanced functional difference equations
    Zhang, Zhenguo
    Li, Qiaoluan
    Computers and Mathematics with Applications, 1998, 36 (06): : 11 - 18
  • [8] Oscillation theorems for second-order nonlinear partial difference equations
    Liu, ST
    Liu, YQ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 132 (02) : 479 - 482
  • [9] Oscillation theorems for second-order nonlinear delay difference equations
    S. H. Saker
    Periodica Mathematica Hungarica, 2003, 47 (1-2) : 201 - 213
  • [10] OSCILLATION THEOREMS FOR CERTAIN SECOND-ORDER NONLINEAR RETARDED DIFFERENCE EQUATIONS
    Chatzarakis, George E.
    Grace, Said R.
    Jadlovska, Irena
    MATHEMATICA SLOVACA, 2021, 71 (04) : 871 - 880