Global solutions for the stochastic reaction-diffusion equation with super-linear multiplicative noise and strong dissipativity

被引:5
|
作者
Salins, Michael [1 ]
机构
[1] Boston Univ, Boston, MA 02215 USA
来源
关键词
reaction-diffusion; dissipativity; global solution; explosion; LONG-TIME EXISTENCE; HEAT-EQUATION; AVERAGING PRINCIPLE; BLOW-UP; UNIQUENESS; SYSTEMS;
D O I
10.1214/22-EJP740
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A condition is identified that implies that solutions to the stochastic reaction-diffusion equation aut = Au + f (u) + sigma(u)W on a bounded spatial domain never explode. We consider the case where sigma grows polynomially and f is polynomially dissipative, meaning that f strongly forces solutions toward finite values. This result demonstrates the role that the deterministic forcing term f plays in preventing explosion.
引用
收藏
页数:18
相关论文
共 50 条