Spatio-Temporal Activity Recognition for Evolutionary Search Behavior Prediction

被引:0
|
作者
Friess, Stephen [1 ]
Tino, Peter [1 ]
Menzel, Stefan
Xu, Zhao [2 ]
Sendhoff, Bernhard
Yao, Xin [1 ,3 ]
机构
[1] Univ Birmingham, Sch Comp Sci, CERCIA, Birmingham, England
[2] NEC Labs Europe GmbH, D-69115 Heidelberg, Germany
[3] Southern Univ Sci & Technol, Shenzhen, Peoples R China
关键词
Representation Learning; Algorithm Selection; Graph Neural Networks; Activity Recognition; Time Series Classification;
D O I
10.1109/IJCNN55064.2022.9892483
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional methods for solving problems within computer science rely mostly upon the application of handcrafted algorithms. As however manual engineering of them can be considered to be a tedious process, it is interesting to consider how far internal mechanisms can be directly learned in an end-to-end manner instead. This is especially tempting to consider for metaheuristic and evolutionary optimization routines which inherently rely upon creating abundant amounts of data during run-time. To implement such an approach for these types of algorithms, it effectively requires a pipeline to first acquire derandomized algorithm components in a domain-dependent manner and secondly a mapping to select them based upon characteristic features which unveil the black box character of an optimization problem. While in principle, within our prior work we proposed methods for extracting spatial features from metadata, these unfortunately fail to acknowledge the time-dependent nature of it. Thus, fail in scenarios when the inputs generated from initial iterations are not expressive enough. For this reason we specifically develop within this work architectures for spatio-temporal data processing. Particularly, we find that our proposed GCN-GRU and LSTM architectures, which take inspiration from CNN-LSTMs originally proposed for activity recognition in multimedia data-streams, demonstrate high efficiency and most consistent performance on time series of variable length. Further, we can also demonstrate that the class activation map (CAM) for interpretable learning with time series data helps to understand and reflects problem-dependent properties of the search behavior of an optimization algorithm.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Spatio-Temporal Phrases for Activity Recognition
    Zhang, Yimeng
    Liu, Xiaoming
    Chang, Ming-Ching
    Ge, Weina
    Chen, Tsuhan
    COMPUTER VISION - ECCV 2012, PT III, 2012, 7574 : 707 - 721
  • [2] Spatio-Temporal Context Kernel for Activity Recognition
    Yuan, Fei
    Sahbi, Hichem
    Prinet, Veronique
    2011 FIRST ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2011, : 436 - 440
  • [3] Abnormal Behavior Recognition Based on Spatio-temporal Context
    Yang, Yuanfeng
    Li, Lin
    Liu, Zhaobin
    Liu, Gang
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2020, 16 (03): : 612 - 628
  • [4] Spatio-Temporal Prediction of Suspect Location by Spatio-Temporal Semantics
    Duan L.
    Hu T.
    Zhu X.
    Ye X.
    Wang S.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2019, 44 (05): : 765 - 770
  • [5] Spatio-Temporal Analysis of Trajectory for Pedestrian Activity Recognition
    Kim, Young-Nam
    Park, Jin-Hee
    Kim, Moon-Hyun
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2018, 13 (02) : 961 - 968
  • [6] Abnormal Activity Recognition Using Spatio-Temporal Features
    Chathuramali, K. G. Manosha
    Ramasinghe, Sameera
    Rodrigo, Ranga
    2014 7TH INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION FOR SUSTAINABILITY (ICIAFS), 2014,
  • [7] A Hierarchical Spatio-Temporal Model for Human Activity Recognition
    Xu, Wanru
    Miao, Zhenjiang
    Zhang, Xiao-Ping
    Tian, Yi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (07) : 1494 - 1509
  • [8] AutoST: Efficient Neural Architecture Search for Spatio-Temporal Prediction
    Li, Ting
    Zhang, Junbo
    Bao, Kainan
    Liang, Yuxuan
    Li, Yexin
    Zheng, Yu
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 794 - 802
  • [9] Recurrent Prediction With Spatio-Temporal Attention for Crowd Attribute Recognition
    Li, Qiaozhe
    Zhao, Xin
    He, Ran
    Huang, Kaiqi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (07) : 2167 - 2177
  • [10] Spatio-Temporal Object Recognition
    De Geest, Roeland
    Deboeverie, Francis
    Philips, Wilfried
    Tuytelaars, Tinne
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2015, 2015, 9386 : 681 - 692