Tops as building blocks for G2 manifolds

被引:20
|
作者
Braun, Andreas P. [1 ]
机构
[1] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, 1 Keble Rd, Oxford OX1 3NP, England
来源
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Differential and Algebraic Geometry; M-Theory; Superstring Vacua; K3; FIBRATIONS; FANO; 3-FOLDS; II VACUA; F-THEORY; POLYHEDRA; SURFACES; HOLONOMY; DUALITY; COMPACTIFICATIONS; G(2)-MANIFOLDS;
D O I
10.1007/JHEP10(2017)083
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A large number of examples of compact G(2) manifolds, relevant to supersymmetric compactifications of M-Theory to four dimensions, can be constructed by forming a twisted connected sum of two building blocks times a circle. These building blocks, which are appropriate K3-fibred threefolds, are shown to have a natural and elegant construction in terms of tops, which parallels the construction of Calabi-Yau manifolds via reflexive polytopes. In particular, this enables us to prove combinatorial formulas for the Hodge numbers and other relevant topological data.
引用
收藏
页数:46
相关论文
共 50 条
  • [1] Tops as building blocks for G2 manifolds
    Andreas P. Braun
    Journal of High Energy Physics, 2017
  • [2] Generalised G2–Manifolds
    Frederik Witt
    Communications in Mathematical Physics, 2006, 265 : 275 - 303
  • [3] Deformations in G2 manifolds
    Akbulut, Selman
    Salur, Sema
    ADVANCES IN MATHEMATICS, 2008, 217 (05) : 2130 - 2140
  • [4] Gerbes on G2 manifolds
    Oliveira, Goncalo
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 114 : 570 - 580
  • [5] Algebraic topology of G2 manifolds
    Akbulut, Selman
    Kalafat, Mustafa
    EXPOSITIONES MATHEMATICAE, 2016, 34 (01) : 106 - 129
  • [6] HOLONOMY GROUPS OF G2*-MANIFOLDS
    Fino, Anna
    Kath, Ines
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (11) : 7725 - 7755
  • [7] MODULI SPACES OF G2 MANIFOLDS
    Grigorian, Sergey
    REVIEWS IN MATHEMATICAL PHYSICS, 2010, 22 (09) : 1061 - 1097
  • [8] Matter from G2 manifolds
    Berglund, P
    Brandhuber, A
    NUCLEAR PHYSICS B, 2002, 641 (1-2) : 351 - 375
  • [9] An analytic invariant of G2 manifolds
    Crowley, Diarmuid
    Goette, Sebastian
    Nordstrom, Johannes
    INVENTIONES MATHEMATICAE, 2025, 239 (03) : 865 - 907
  • [10] G2 Holonomy Manifolds are Superconformal
    Lázaro O. Rodríguez Díaz
    Communications in Mathematical Physics, 2018, 364 : 385 - 440