Identification of state-dependent parameter models with support vector regression

被引:17
|
作者
Toivonen, H. T. [1 ]
Totterman, S. [1 ]
Akesson, B. [1 ]
机构
[1] Abo Akad Univ, Fac Technol, FIN-20500 Turku, Finland
关键词
D O I
10.1080/00207170701378673
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A support vector regression approach is presented for the identification of state-dependent parameter ARX models, whose parameters are described as functions of past inputs and outputs. The problem of identifying the state-dependent parameters reduces to a standard support vector regression problem with a kernel function which is defined in terms of the kernels used to represent the individual parameters. Numerical examples show that the support vector method gives accurate parameter estimates for systems which have a state-dependent parameter representation.
引用
收藏
页码:1454 / 1470
页数:17
相关论文
共 50 条
  • [1] Identification of Linear Parameter-Varying Models with Unknown Parameter Dependence Using ε-Support Vector Regression
    Datar, Adwait
    Schulz, Erik
    Werner, Herbert
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 2011 - 2016
  • [2] Identification of Hammerstein Models Based on Support Vector Regression
    Du, Zhiyong
    Wang, Xianfang
    2009 IITA INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS ENGINEERING, PROCEEDINGS, 2009, : 371 - +
  • [3] Off-line State-dependent Parameter Models Identification using Simple Fixed Interval Smoothing
    Jara Alegria, Elvis Omar
    Teixeira, Hugo Tanzarella
    Bottura, Celso Pascoli
    ICIMCO 2015 PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL. 1, 2015, : 336 - 341
  • [4] Parameter Identification Problem for the Abstract State-Dependent Delay Differential Equation
    Ruhil, Santosh
    Malik, Muslim
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [5] Parameter identification in classes of neutral differential equations with state-dependent delays
    Hartung, F
    Herdman, TL
    Turi, J
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (03) : 305 - 325
  • [6] Identification of Hammerstein Models Based on Online Support Vector Regression
    Wang Xianfang
    Zheng Yanbin
    Zhang Haiyan
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 1652 - 1657
  • [7] ESTIMATION OF A STATE-DEPENDENT MODEL PARAMETER
    CHUNG, YS
    CHUNG, CB
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 1995, 12 (03) : 372 - 377
  • [8] Nonlinear system identification using two-dimensional wavelet-based state-dependent parameter models
    Truong, Nguyen-Vu
    Wang, Liuping
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2009, 40 (11) : 1161 - 1180
  • [9] Establishing a flight load parameter identification model with support vector machine regression
    Cao, S., 2013, Northwestern Polytechnical University (31):
  • [10] Mechanical parameter identification of servo systems using robust support vector regression
    Cho, KR
    Seok, JK
    Lee, DC
    PESC 04: 2004 IEEE 35TH ANNUAL POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-6, CONFERENCE PROCEEDINGS, 2004, : 3425 - 3430