Skin Lesions Asymmetry Estimation Using Artificial Neural Networks

被引:0
|
作者
Damian, Felicia Anisoara [1 ]
Moldovanu, Simona [2 ]
Moraru, Luminita [1 ]
机构
[1] Dunarea de Jos Univ Galati, Fac Sci & Environm, Modelling & Simulat Lab, Galati, Romania
[2] Dunarea de Jos Univ Galati, Dept Comp Sci & Informat Technol, Modelling & Simulat Lab, Galati, Romania
关键词
melanoma; naevus; asymmetry; ANN; regression coefficient; mean square error; MELANOMA; DIAGNOSIS;
D O I
10.1109/ICSTCC52150.2021.9607133
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial Neural Networks (ANNs) are efficient tools successfully used to solve a regression problem. In this paper, the skin lesions are analyzed using a feedforward neural network (FFN) with Levenberg-Marquardt Backpropagation (LMBP) training algorithm as a supervised learning method. The proposed model uses four combinations of inputs built on the data from type of skin lesion/database/ method of asymmetry computation and searches for four combination of desired outputs such as the type of skin lesion/database/ method of asymmetry computation. Also, the number of hidden neurons has been changed to reach the condition of maximum regression coefficient (R) and minimum mean squared error (MSE). The proposed FFN-LMBP model was validated with 24 images and tested with another 24 images. This study is centered on the most relevant and widely used feature in dermoscopic images, i.e., asymmetry. Two algorithms are implemented to extract handcraft asymmetry values: one algorithm computes the asymmetry of the geometric characteristics (GAF) using the geometric shape of the lesions, and the second one computes the asymmetry based on histogram projections (AHP) on the horizontal and vertical axes. The MED-NODE and PH2 databases are used for skin lesion detection.
引用
收藏
页码:64 / 67
页数:4
相关论文
共 50 条
  • [1] Classification of Dermatological Asymmetry of the Skin Lesions Using Pretrained Convolutional Neural Networks
    Beczkowski, Michal
    Borowski, Norbert
    Milczarski, Piotr
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING (ICAISC 2021), PT II, 2021, 12855 : 3 - 14
  • [2] Classification of skin lesions using convolutional neural networks
    Bilginer, Onur
    Tunga, Burcu
    Demirer, Rustu Murat
    PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2022, 28 (02): : 208 - 214
  • [3] Skin Diseases Diagnosis using Artificial Neural Networks
    Filimon, Delia-Maria
    Albu, Adriana
    2014 IEEE 9TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2014, : 189 - 194
  • [4] Direction of Arrival Estimation by Using Artificial Neural Networks
    Unlersen, Muhammes Fahri
    Yaldiz, Ercan
    UKSIM-AMSS 10TH EUROPEAN MODELLING SYMPOSIUM ON COMPUTER MODELLING AND SIMULATION (EMS), 2016, : 242 - 245
  • [5] Probability density estimation using artificial neural networks
    Likas, A
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 135 (02) : 167 - 175
  • [6] Efficient estimation of osteoporosis using artificial neural networks
    Lemineur, Gerald
    Harba, Rachid
    Kilic, Niyazi
    Ucan, Osman N.
    Osman, Onur
    Benhamou, Laurent
    IECON 2007: 33RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-3, CONFERENCE PROCEEDINGS, 2007, : 3039 - +
  • [7] Hurst Parameter Estimation Using Artificial Neural Networks
    Ledesma-Orozco, S.
    Ruiz-Pinales, J.
    Garcia-Hernandez, G.
    Cerda-Villafana, G.
    Hernandez-Fusilier, D.
    JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2011, 9 (02) : 227 - 241
  • [8] DIRECTION OF ARRIVAL ESTIMATION USING ARTIFICIAL NEURAL NETWORKS
    JHA, S
    DURRANI, T
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1991, 21 (05): : 1192 - 1201
  • [9] Estimation of daily evaporation using artificial neural networks
    Doǧan, Emrah
    Işik, Sabahattin
    Sandalci, Mehmet
    Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 2007, 18 (02): : 4119 - 4131
  • [10] Solar radiation estimation using artificial neural networks
    Dorvlo, ASS
    Jervase, JA
    Al-Lawati, A
    APPLIED ENERGY, 2002, 71 (04) : 307 - 319