VARIATIONAL ANALYSIS FOR NONLOCAL YAMABE-TYPE SYSTEMS

被引:2
|
作者
Xiang, Mingqi [1 ]
Bisci, Giovanni Molica [2 ]
Zhang, Binlin [3 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
[2] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, I-61029 Urbino, Italy
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Fractional Laplacian; Yamabe-type problems; topological methods; genus theory; KLEIN-GORDON-MAXWELL; SCHRODINGER-POISSON SYSTEM; KIRCHHOFF-TYPE EQUATIONS; EXISTENCE THEOREMS; POSITIVE SOLUTIONS; CRITICAL EXPONENT; SOLITARY WAVES; MULTIPLICITY;
D O I
10.3934/dcdss.2020159
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is concerned with existence, multiplicity and asymptotic behavior of (weak) solutions for nonlocal systems involving critical nonlinearities. More precisely, we consider {M([u](s)(2)-mu integral V-R3(x)vertical bar u vertical bar(2)dx) [(-Delta)(s)u-mu V(x)u] - phi vertical bar u vertical bar(2)*(s,)t(-2)u -lambda h(x)vertical bar u vertical bar(p-2)u+vertical bar u vertical bar(2)*(s-2)u in R-3 (-Delta)(t)phi = vertical bar u vertical bar(2)*(s,t) in R-3, where (-Delta)(s) is the fractional Lapalcian, [u](s) is the Gagliardo seminorm of u, M : R-0(+) -> R-0(+) is a continuous function satisfying certain assumptions, V (x) = jxj is the Hardy potential function, 2*(s,t) = (3 + 2t)/(3 - 2s), s, t is an element of (0, 1), lambda, mu are two positive parameters, 1 < p < 2*(s) = 6=(3 - 2s) and h is an element of L-2*(s) =(2(s)* - p (R-3). By using topological methods and the Krasnoleskii's genus theory, we obtain the existence, multiplicity and asymptotic behaviour of solutions for above problem under suitable positive parameters lambda and mu. Moreover, we also consider the existence of nonnegative radial solutions and non-radial sign-changing solutions. The main novelties are that our results involve the possibly degenerate Kirchhoff function and the upper critical exponent in the sense of Hardy-Littlehood-Sobolev inequality. We emphasize that some of the results contained in the paper are also valid for nonlocal Schrodinger-Maxwell systems on Cartan-Hadamard manifolds.
引用
收藏
页码:2069 / 2094
页数:26
相关论文
共 50 条
  • [1] Subcritical approximation of a Yamabe-type nonlocal equation: a Gamma-convergence approach
    Palatucci, Giampiero
    Pisante, Adriano
    Sire, Yannick
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2015, 14 (03) : 819 - 840
  • [2] Singular solutions to Yamabe-type systems with prescribed asymptotics *
    Caju, Rayssa
    do O, Joao Marcos
    Santos, Almir Silva
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 347 : 246 - 281
  • [3] Yamabe-Type Equations on Carnot Groups
    Giovanni Molica Bisci
    Dušan Repovš
    Potential Analysis, 2017, 46 : 369 - 383
  • [4] Yamabe-Type Equations on Carnot Groups
    Bisci, Giovanni Molica
    Repovs, Dusan
    POTENTIAL ANALYSIS, 2017, 46 (02) : 369 - 383
  • [5] Concentration on minimal submanifolds for a Yamabe-type problem
    Deng, Shengbing
    Musso, Monica
    Pistoia, Angela
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (09) : 1379 - 1425
  • [6] ON YAMABE-TYPE PROBLEMS ON RIEMANNIAN MANIFOLDS WITH BOUNDARY
    Ghimenti, Marco
    Micheletti, Anna Maria
    Pistoia, Angela
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 284 (01) : 79 - 102
  • [7] Compactness and non-compactness for Yamabe-type problems
    Marques, Fernando Coda
    CONTRIBUTIONS TO NONLINEAR ELLIPTIC EQUATIONS AND SYSTEMS, 2015, 86 : 121 - 131
  • [8] Positive solutions of Yamabe-type equations on the Heisenberg group
    Brandolini, L
    Rigoli, M
    Setti, AG
    DUKE MATHEMATICAL JOURNAL, 1998, 91 (02) : 241 - 296
  • [9] MULTIPLE SOLUTIONS OF A PERTURBED YAMABE-TYPE EQUATION ON GRAPH
    Liu, Yang
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (05) : 911 - 926
  • [10] New Yamabe-type flow in a compact Riemannian manifold
    Ma, Li
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 184