On shakedown theory for elastic-plastic materials and extensions

被引:42
|
作者
Pham Duc Chinh [1 ]
机构
[1] Vietnamese Acad Sci & Technol, Hanoi, Vietnam
关键词
plastic collapse; elastic-plastic material; path-independent shakedown theorems; high-cycle fatigue; high-cycle ratcheting;
D O I
10.1016/j.jmps.2007.11.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The idea that an elastic-plastic structure under given loading history may shake down to some purely elastic state (and hence to a safe state) after a finite amount of initial plastic deformation, can apply to many sophisticated material models with possible allowable changes of additional material characteristics, as has been done in the literature. Despite some claims to the contrary, it is shown; however, that the shakedown theorems in a Melan-Koiter path-independent sense have been extended successfully only for certain elastic-plastic hardening materials of practical significance. Shakedown of kinematic hardening material is determined by the ultimate and initial yield stresses, not the generally plastic deformation history-depen dent hardening curve between. The initial yield stress is no longer the convenient one (corresponding to the plastic deformation at the level of 0.2%) as in usual elastic-plastic analysis but to be related to the shakedown safety requirement of the structure and should be as small as the fatigue limit for arbitrary high-cycle loading. Though the ultimate yield strength is well defined in the standard monotonic loading experiment, it also should be reduced to the so-called "high-cycle ratchetting" stress for the path-independent shakedown analysis. A reduced simple form of the shakedown kinematic theorem without time integrals is conjectured for general practical uses. Application of the theorem is illustrated by examples for a hollow cylinder, sphere, and a clamped disk, under variable (including quasiperiodic dynamic) pressure. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1905 / 1915
页数:11
相关论文
共 50 条