Complexity of two-variable Dependence Logic and IF-Logic

被引:4
|
作者
Kontinen, Juha [1 ]
Kuusisto, Antti [2 ]
Lohmann, Peter [3 ]
Virtema, Jonni [2 ]
机构
[1] Univ Helsinki, FIN-00014 Helsinki, Finland
[2] Univ Tampere, FIN-33101 Tampere, Finland
[3] Leibniz Univ Hannover, Hannover, Germany
基金
芬兰科学院;
关键词
dependence logic; independence-friendly logic; two-variable logic; decidability; complexity; satisfiability; expressivity; 1ST-ORDER LOGIC; 2; VARIABLES; QUANTIFIERS;
D O I
10.1109/LICS.2011.14
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the two-variable fragments D-2 and IF2 of dependence logic and independence-friendly logic. We consider the satisfiability and finite satisfiability problems of these logics and show that for D-2, both problems are NEXPTIME-complete, whereas for IF2, the problems are Pi(0)(1) and Sigma(0)(1)-complete, respectively. We also show that D-2 is strictly less expressive than IF2 and that already in D-2, equicardinality of two unary predicates and infinity can be expressed (the latter in the presence of a constant symbol). An extended version of this publication can be found at arxiv.org.
引用
收藏
页码:289 / 298
页数:10
相关论文
共 50 条
  • [1] Complexity of two-variable dependence logic and IF-logic
    Kontinen, Juha
    Kuusisto, Antti
    Lohmann, Peter
    Virtema, Jonni
    INFORMATION AND COMPUTATION, 2014, 239 : 237 - 253
  • [2] Complexity of two-variable logic with counting
    Pacholski, L
    Szwast, W
    Tendera, L
    12TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 1997, : 318 - 327
  • [3] Complexity of Two-Variable Logic on Finite Trees
    Benaim, Saguy
    Benedikt, Michael
    Charatonik, Witold
    Kieronski, Emanuel
    Lenhardt, Rastislav
    Mazowiecki, Filip
    Worrell, James
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2016, 17 (04)
  • [4] Complexity of Two-Variable Logic on Finite Trees
    Benaim, Saguy
    Benedikt, Michael
    Charatonik, Witold
    Kieronski, Emanuel
    Lenhardt, Rastislav
    Mazowiecki, Filip
    Worrell, James
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT II, 2013, 7966 : 74 - 88
  • [5] Two-Variable Logic with Counting and Trees
    Charatonik, Witold
    Witkowski, Piotr
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2016, 17 (04)
  • [6] Complexity results for first-order two-variable logic with counting
    Pacholski, L
    Szwast, W
    Tendera, L
    SIAM JOURNAL ON COMPUTING, 2000, 29 (04) : 1083 - 1117
  • [7] Two-Variable First Order Logic with Counting Quantifiers: Complexity Results
    Lodaya, Kamal
    Sreejith, A. V.
    DEVELOPMENTS IN LANGUAGE THEORY, DLT 2017, 2017, 10396 : 260 - 271
  • [8] Two-Variable Logic on Data Words
    Bojanczyk, Mikolaj
    David, Claire
    Muscholl, Anca
    Schwentick, Thomas
    Segoufin, Luc
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2011, 12 (04)
  • [9] On preservation theorems for two-variable logic
    Grädel, E
    Rosen, E
    MATHEMATICAL LOGIC QUARTERLY, 1999, 45 (03) : 315 - 325
  • [10] Two-variable logic with counting is decidable
    Gradel, E
    Otto, M
    Rosen, E
    12TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 1997, : 306 - 317