Reconsidering data in learning analytics: opportunities for critical research using a documentation studies framework

被引:22
|
作者
Jones, Kyle M. L. [1 ]
McCoy, Chase [2 ]
机构
[1] Indiana Univ Indianapolis IUPUI, Sch Informat & Comp, Dept Lib & Informat Sci, Indianapolis, IN USA
[2] Indiana Univ, Sch Informat Comp & Engn, Dept Informat & Lib Sci, Bloomington, IN USA
关键词
Learning analytics; educational data mining; documentation studies; critical data studies; INFORMATION;
D O I
10.1080/17439884.2018.1556216
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
In this article, we argue that the contributions of documentation studies can provide a useful framework for analyzing the datafication of students due to emerging learning analytics (LA) practices. Specifically, the concepts of individuals being 'made into' data and how that data is 'considered as' can help to frame vital questions concerning the use of student data in LA. More specifically, approaches informed by documentation studies will enable researchers to address the sociotechnical processes underlying how students are constructed into data, and ways data about students are considered and understood. We draw on these concepts to identify and describe three areas for future research in LA. With the description of each area, we provide a brief analysis of current practices in American higher education, highlighting how documentation studies enables deeper analytical digging.
引用
收藏
页码:52 / 63
页数:12
相关论文
共 50 条
  • [1] E-Learning: Challenges and Research Opportunities Using Machine Learning & Data Analytics
    Moubayed, Abdallah
    Injadat, Mohammadnoor
    Nassif, Ali Bou
    Lutfiyya, Hanan
    Shami, Abdallah
    IEEE ACCESS, 2018, 6 : 39117 - 39138
  • [2] Opportunities and Challenges in Using Learning Analytics in Learning Design
    Schmitz, Marcel
    van Limbeek, Evelien
    Greller, Wolfgang
    Sloep, Peter
    Drachsler, Hendrik
    DATA DRIVEN APPROACHES IN DIGITAL EDUCATION, 2017, 10474 : 209 - 223
  • [3] Learning and Evidence Analytics Framework Bridges Research and Practice for Educational Data Science
    Ogata, Hiroaki
    Majumdar, Rwitajit
    Flanagan, Brendan
    COMMUNICATIONS OF THE ACM, 2023, 66 (07) : 72 - 74
  • [4] Learning and Evidence Analytics Framework Bridges Research and Practice for Educational Data Science
    Ogata, Hiroaki
    Majumdar, Rwitajit
    Flanagan, Brendan
    COMMUNICATIONS OF THE ACM, 2024, 67 (07) : 72 - 74
  • [5] A Scalable Framework for Multilevel Streaming Data Analytics using Deep Learning
    Ge, Shihao
    Isah, Haruna
    Zulkernine, Farhana
    Khan, Shahzad
    2019 IEEE 43RD ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 2, 2019, : 189 - 194
  • [6] Big data and machine learning in critical care: Opportunities for collaborative research
    Nunez Reiz, Antonio
    Sanchez Garcia, Miguel
    Martinez Sagasti, Fernando
    Alvarez Gonzalez, Manuel
    Blesa Malpica, Antonio
    Martin Benitez, Juan Carlos
    Nieto Cabrera, Mercedes
    del Pino Ramirez, Angela
    Gil Perdomo, Jose Miguel
    Prada Alonso, Jesus
    Ceti, Leo Anthony
    de la Hoz, Miguel Angel Armengol
    Deliberato, Rodrigo
    Paik, Kenneth
    Pollard, Tom
    Raffa, Jesse
    Torres, Felipe
    Mayol, Julio
    Chafer, Joan
    Gonzalez Ferrer, Arturo
    Rey, Angel
    Gonzalez Luengo, Henar
    Fico, Giuseppe
    Lombroni, Ivana
    Hernandez, Liss
    Lopez, Laura
    Merino, Beatriz
    Fernanda Cabrera, Maria
    Teresa Arredondo, Maria
    Bodi, Maria
    Gomez, Josep
    Rodriguez, Alejandro
    MEDICINA INTENSIVA, 2019, 43 (01) : 52 - 57
  • [7] Sports Injuries and Prevention Analytics: Conceptual Framework & Research Opportunities
    Wilkerson, Gary B.
    Gupta, Ashish
    AMCIS 2016 PROCEEDINGS, 2016,
  • [8] Advances and opportunities in machine learning for process data analytics
    Qin, S. Joe
    Chiang, Leo H.
    COMPUTERS & CHEMICAL ENGINEERING, 2019, 126 : 465 - 473
  • [9] Mobile Big Data Analytics: Research, Practice and Opportunities
    Zeinalipour-Yazti, Demetrios
    Krishnaswamy, Shonali
    2014 IEEE 15TH INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM), VOL 1, 2014, : 1 - 2
  • [10] A Framework for Identifying and Prioritizing Data Analytics Opportunities in Additive Manufacturing
    Park, Hyunseop
    Ko, Hyunwoong
    Lee, Yung-Tsun T.
    Cho, Hyunbo
    Witherell, Paul
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 3458 - 3467