Compatible Connectivity Augmentation of Planar Disconnected Graphs

被引:1
|
作者
Aloupis, Greg [1 ]
Barba, Luis [2 ,3 ]
Carmi, Paz [4 ]
Dujmovic, Vida [5 ]
Frati, Fabrizio [6 ]
Morin, Pat [2 ]
机构
[1] Tufts Univ, Dept Comp Sci, Medford, MA 02155 USA
[2] Carleton Univ, Sch Comp Sci, Ottawa, ON K1S 5B6, Canada
[3] Univ Libre Bruxelles, Dept Informat, Brussels, Belgium
[4] Ben Gurion Univ Negev, Dept Comp Sci, Beer Sheva, Israel
[5] Univ Ottawa, Sch Comp Sci & Elect Engn, Ottawa, ON, Canada
[6] Roma Tre Univ, Dept Engn, Rome, Italy
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Planar graphs; Graph drawing; Connectivity; Euclidean minimum spanning trees; TRIANGULATIONS;
D O I
10.1007/s00454-015-9716-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the following compatible connectivity-augmentation problem: We are given a labeled n-vertex planar graph that has connected components, and isomorphic plane straight-line drawings of . We wish to augment by adding vertices and edges to make it connected in such a way that these vertices and edges can be added to as points and straight line segments, respectively,to obtain k plane straight-line drawings isomorphic to the augmentation of G. We show that adding Theta(nr(1-1/k)) edges and vertices to G is always sufficient and sometimes necessary to achieve this goal. The upper bound holds for all r is an element of {2,..., n} and k >= 2 and is achievable by an algorithm whose running time is O(nr(1-1/k)) for k = O(1) and whose running time is O(kn(2)) for general values of k. The lower bound holds for all r is an element of {2,..., n/4} and k >= 2.
引用
收藏
页码:459 / 480
页数:22
相关论文
共 50 条
  • [1] Compatible Connectivity Augmentation of Planar Disconnected Graphs
    Greg Aloupis
    Luis Barba
    Paz Carmi
    Vida Dujmović
    Fabrizio Frati
    Pat Morin
    Discrete & Computational Geometry, 2015, 54 : 459 - 480
  • [2] Connectivity augmentation in planar straight line graphs
    Toth, Csaba D.
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (03) : 408 - 425
  • [3] Minimal Disconnected Cuts in Planar Graphs
    Kaminski, Marcin
    Paulusma, Daniel
    Stewart, Anthony
    Thilikos, Dimitrios M.
    NETWORKS, 2016, 68 (04) : 250 - 259
  • [4] Minimum weight connectivity augmentation for planar straight-line graphs
    Akitaya, Hugo A.
    Inkulu, Rajasekhar
    Nichols, Torrie L.
    Souvaine, Diane L.
    Toth, Csaba D.
    Winston, Charles R.
    THEORETICAL COMPUTER SCIENCE, 2019, 789 : 50 - 63
  • [5] Edge-splitting and edge-connectivity augmentation in planar graphs
    Nagamochi, H
    Eades, P
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 1998, 1412 : 96 - 111
  • [6] Minimum Weight Connectivity Augmentation for Planar Straight-Line Graphs
    Akitaya, Hugo A.
    Inkulu, Rajasekhar
    Nichols, Torrie L.
    Souvaine, Diane L.
    Toth, Csaba D.
    Winston, Charles R.
    WALCOM: ALGORITHMS AND COMPUTATION, WALCOM 2017, 2017, 10167 : 204 - 216
  • [7] Tri-Edge-Connectivity Augmentation for Planar Straight Line Graphs
    Al-Jubeh, Marwan
    Ishaque, Mashhood
    Redei, Kristof
    Souvane, Diane L.
    Toth, Csaba D.
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 902 - 912
  • [8] Extremal graphs in connectivity augmentation
    Jordán, T
    JOURNAL OF GRAPH THEORY, 1999, 31 (03) : 179 - 193
  • [9] Regular Augmentation of Planar Graphs
    Hartmann, Tanja
    Rollin, Jonathan
    Rutter, Ignaz
    ALGORITHMICA, 2015, 73 (02) : 306 - 370
  • [10] Cubic Augmentation of Planar Graphs
    Hartmann, Tanja
    Rollin, Jonathan
    Rutter, Ignaz
    ALGORITHMS AND COMPUTATION, ISAAC 2012, 2012, 7676 : 402 - 412